日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 定義:若函數(shù)y=f(x)在某一區(qū)間D上任取兩個實數(shù)x1、x2,且x1≠x2,都有,則稱函數(shù)y=f(x)在區(qū)間D上具有性質(zhì)L.
          (1)寫出一個在其定義域上具有性質(zhì)L的對數(shù)函數(shù)(不要求證明).
          (2)對于函數(shù),判斷其在區(qū)間(0,+∞)上是否具有性質(zhì)L?并用所給定義證明你的結(jié)論.
          (3)若函數(shù)在區(qū)間(0,1)上具有性質(zhì)L,求實數(shù)a的取值范圍.
          【答案】分析:(1)寫出的函數(shù)是下凹的函數(shù)即可;
          (2)函數(shù)在區(qū)間(0,+∞)上具有性質(zhì)L.根據(jù)定義,任取x1、x2∈(0,+∞),且x1≠x2
          只需要證明>0即可;
          (3)任取x1、x2∈(0,1),且x1≠x2>0,只需要2-a•x1•x2(x1+x2)>0在x1、x2∈(0,1)上恒成立,即,故可求實數(shù)a的取值范圍.
          解答:解:(1)(或其它底在(0,1)上的對數(shù)函數(shù)).…(2分)
          (2)函數(shù)在區(qū)間(0,+∞)上具有性質(zhì)L.…(4分)
          證明:任取x1、x2∈(0,+∞),且x1≠x2
          ==
          ∵x1、x2∈(0,+∞)且x1≠x2
          ∴(x1-x22>0,2x1•x2(x1+x2)>0
          >0,

          所以函數(shù)在區(qū)間(0,+∞)上具有性質(zhì)L.…(8分)
          (3)任取x1、x2∈(0,1),且x1≠x2
          ===
          ∵x1、x2∈(0,1)且x1≠x2,
          ∴(x1-x22>0,4x1•x2(x1+x2)>0
          要使上式大于零,必須2-a•x1•x2(x1+x2)>0在x1、x2∈(0,1)上恒成立,
          ,
          ∴a≤1,
          即實數(shù)a的取值范圍為(-∞,1]…(14分)
          點評:本題以函數(shù)為載體,考查新定義,考查恒成立問題,解題的關(guān)鍵是對新定義的理解,恒成立問題采用分離參數(shù)法.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          定義:若函數(shù)y=f(x)在某一區(qū)間D上任取兩個實數(shù)x1、x2,且x1≠x2,都有
          f(x1)+f(x2)
          2
          >f(
          x1+x2
          2
          )
          ,則稱函數(shù)y=f(x)在區(qū)間D上具有性質(zhì)L.
          (1)寫出一個在其定義域上具有性質(zhì)L的對數(shù)函數(shù)(不要求證明).
          (2)對于函數(shù)f(x)=x+
          1
          x
          ,判斷其在區(qū)間(0,+∞)上是否具有性質(zhì)L?并用所給定義證明你的結(jié)論.
          (3)若函數(shù)f(x)=
          1
          x
          -ax2
          在區(qū)間(0,1)上具有性質(zhì)L,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          定義:若函數(shù)y=f(x)在某一區(qū)間D上任取兩個實數(shù)x1、x2,且x1≠x2,都有數(shù)學(xué)公式,則稱函數(shù)y=f(x)在區(qū)間D上具有性質(zhì)L.
          (1)寫出一個在其定義域上具有性質(zhì)L的對數(shù)函數(shù)(不要求證明).
          (2)對于函數(shù)數(shù)學(xué)公式,判斷其在區(qū)間(0,+∞)上是否具有性質(zhì)L?并用所給定義證明你的結(jié)論.
          (3)若函數(shù)數(shù)學(xué)公式在區(qū)間(0,1)上具有性質(zhì)L,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚州市邗江中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

          定義:若函數(shù)y=f(x)在某一區(qū)間D上任取兩個實數(shù)x1、x2,且x1≠x2,都有,則稱函數(shù)y=f(x)在區(qū)間D上具有性質(zhì)L.
          (1)寫出一個在其定義域上具有性質(zhì)L的對數(shù)函數(shù)(不要求證明).
          (2)對于函數(shù),判斷其在區(qū)間(0,+∞)上是否具有性質(zhì)L?并用所給定義證明你的結(jié)論.
          (3)若函數(shù)在區(qū)間(0,1)上具有性質(zhì)L,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市八縣(市)一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

          定義:若函數(shù)y=f(x)在某一區(qū)間D上任取兩個實數(shù)x1、x2,且x1≠x2,都有,則稱函數(shù)y=f(x)在區(qū)間D上具有性質(zhì)L.
          (1)寫出一個在其定義域上具有性質(zhì)L的對數(shù)函數(shù)(不要求證明).
          (2)對于函數(shù),判斷其在區(qū)間(0,+∞)上是否具有性質(zhì)L?并用所給定義證明你的結(jié)論.
          (3)若函數(shù)在區(qū)間(0,1)上具有性質(zhì)L,求實數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案