日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】 2022年北京冬奧會的申辦成功與“3億人上冰雪口號的提出,將冰雪這個冷項目迅速炒.北京某綜合大學計劃在一年級開設(shè)冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調(diào)查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣.

          (1)完成下面的列聯(lián)表,并回答能否在犯錯誤的概率不超過0.1的前提下認為對冰球是否有興趣與性別有關(guān)”?

          有興趣

          沒興趣

          合計

          55

          合計

          (2)若將頻率視為概率,現(xiàn)再從該校一年級全體學生中,采用隨機抽樣的方法每次抽取1名學生,抽取5次,記被抽取的5名學生中對冰球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.

          附表:

          0.150

          0.100

          0.050

          0.025

          0.010

          2.072/p>

          2.706

          3.841

          5.024

          6.635

          參考公式:

          【答案】(1)見解析;(2)見解析.

          【解析】

          1)根據(jù)已知數(shù)據(jù)得到如下列聯(lián)表

          有興趣

          沒有興趣

          合計

          45

          10

          55

          30

          15

          45

          合計

          75

          25

          100

          根據(jù)列聯(lián)表中的數(shù)據(jù),得到,

          ,

          所以能在犯錯誤的概率不超過0.1的前提下可以認為對冰球是否有興趣與性別有關(guān)”.

          2)由列聯(lián)表中數(shù)據(jù)可知,對冰球有興趣的學生頻率是,將頻率視為概率,即從大一學生中抽取一名學生,對冰球有興趣的概率是

          由題意知,從而X的分布列為

          X

          0

          1

          2

          3

          4

          5

          , .

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】隨著人們生活水平的提高,越來越多的人愿意花更高的價格購買手機.某機構(gòu)為了解市民使用手機的價格情況,隨機選取了100人進行調(diào)查,并將這100人使用的手機價格按照,,…,分成6組,制成如圖所示的頻率分布直方圖:

          (1)求圖中的值;

          (2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表);

          (3)利用分層抽樣從手機價格在的人中抽取5人,并從這5人中抽取2人進行訪談,求抽取出的2人的手機價格在不同區(qū)間的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          1)若的極大值點,求的值;

          2)若上只有一個零點,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知三棱錐P-ABC底面各棱長均為1、高為,其內(nèi)切球的球心為0,半徑為r.求底面ABC內(nèi)與點O距離不大于2r的點所形成的平面區(qū)域的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為141,則判斷框中應(yīng)填入的條件為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓經(jīng)過點,且離心率為,過其右焦點F的直線交橢圓CM,N兩點,交y軸于E點.若,

          (Ⅰ)求橢圓C的標準方程;

          (Ⅱ)試判斷是否是定值.若是定值,求出該定值;若不是定值,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】世界衛(wèi)生組織的最新研究報告顯示,目前中國近視患者人數(shù)多達6億,高中生和大學生的近視率均已超過七成,為了研究每周累計戶外暴露時間(單位:小時)與近視發(fā)病率的關(guān)系,對某中學一年級200名學生進行不記名問卷調(diào)查,得到如下數(shù)據(jù):

          每周累積戶外暴露時間(單位:小時)

          不少于28小時

          近視人數(shù)

          21

          39

          37

          2

          1

          不近視人數(shù)

          3

          37

          52

          5

          3

          (1)在每周累計戶外暴露時間不少于28小時的4名學生中,隨機抽取2名,求其中恰有一名學生不近視的概率;

          (2)若每周累計戶外暴露時間少于14個小時被認證為“不足夠的戶外暴露時間”,根據(jù)以上數(shù)據(jù)完成如下列聯(lián)表,并根據(jù)(2)中的列聯(lián)表判斷能否在犯錯誤的概率不超過0.01的前提下認為不足夠的戶外暴露時間與近視有關(guān)系?

          近視

          不近視

          足夠的戶外暴露時間

          不足夠的戶外暴露時間

          附:

          P

          0.050

          0.010

          0.001

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】下列判斷正確的是( )

          A. 設(shè)是實數(shù),則“”是“ ”的充分而不必要條件

          B. :“,”則有:不存在,

          C. 命題“若,則”的否命題為:“若,則

          D. ,”為真命題

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列的奇數(shù)項是首項為1的等差數(shù)列,偶數(shù)項是首項為2的等比數(shù)列.數(shù)列n項和為,且滿足,.

          1)求數(shù)列的通項公式:

          2)若,求正整數(shù)m的值;

          3)是否存在正整數(shù)m,使得恰好為數(shù)列中的一項?若存在,求出所有滿足條件的m值,若不存在,說明理由.

          查看答案和解析>>

          同步練習冊答案