日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=aln(1+ex)-(a+1)x,g(x)=x2-(a-1)x-f(lnx),且g(x)在x=1處取得極值.
          (Ⅰ)求實數(shù)a的值;
          (Ⅱ)證明:對(-∞,+∞)上任意兩個互異的實數(shù)x,y,都有
          (Ⅲ)已知△ABC的三個頂點A,B,C都在函數(shù)y=f(x)的圖象上,且橫坐標(biāo)依次成等差數(shù)列,求證△ABC是鈍角三角形.并問它可能是等腰三角形嗎?說明理由.
          【答案】分析:(Ⅰ) ,由g'(1)=0,能求出a.
          (Ⅱ) ,由于lnx是增函數(shù),因此只要證即可.
          (Ⅲ)設(shè)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),x1<x2<x3,則x2-x1=x3-x2=d>0,而,所以f(x1)>f(x2)>f(x3).由此能夠推導(dǎo)出△ABC不可能是等腰三角形.
          解答:解:(Ⅰ) g(x)=x2-(a-1)x-aln(1+x)+(a+1)lnx,

          由g'(1)=0,得2-a+1-+a+1=0,
          解得a=8.
          (Ⅱ)∵
          且lnx是增函數(shù),
          因此只要證
          即證
          實際上,當(dāng)x≠y時,有
          ∴對(-∞,+∞)上任意兩個互異的實數(shù)x,y,都有
          (Ⅲ)設(shè)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),x1<x2<x3,
          則x2-x1=x3-x2=d>0,
          ,
          所以f(x)在(-∞,+∞)上遞減,
          故f(x1)>f(x2)>f(x3).
          此時,
          =(x1-x2)(x3-x2)+(f(x1)-f(x2))(f(x3)-f(x2))<0,
          ∴∠ABC>90
          ,則f(x1)-f(x2)=f(x2)-f(x3),
          ,這與(Ⅱ)的結(jié)論矛盾.
          因為∠ABC是鈍角,
          所以△ABC不可能是等腰三角形.
          點評:本題考查實數(shù)值的求法,不等式的證明,等腰三角形的判斷.綜合性強(qiáng),難度大,具有一定的探索性,對數(shù)學(xué)思維的要求較高.解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時,求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
           

          查看答案和解析>>

          同步練習(xí)冊答案