【題目】某水產(chǎn)養(yǎng)殖基地要將一批海鮮用汽車從所在城市甲運(yùn)至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由水產(chǎn)養(yǎng)殖基地承擔(dān).若水產(chǎn)養(yǎng)殖基地恰能在約定日期(×月×日)將海鮮送達(dá),則銷售商一次性支付給水產(chǎn)養(yǎng)殖基地萬元;若在約定日期前送到,每提前一天銷售商將多支付給水產(chǎn)養(yǎng)殖基地
萬元;若在約定日期后送到,每遲到一天銷售商將少支付給水產(chǎn)養(yǎng)殖基地
萬元.為保證海鮮新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送海鮮,已知下表內(nèi)的信息:
汽車 行駛路線 | 不堵車的情況下到達(dá)城市乙所需時(shí)間(天) | 堵車的情況下到達(dá)城市乙所需時(shí)間(天) | 堵車的概率 | 運(yùn)費(fèi)(萬元) |
公路 | ||||
公路 |
(注:毛利潤(rùn)銷售商支付給水產(chǎn)養(yǎng)殖基地的費(fèi)用
運(yùn)費(fèi))
(Ⅰ)記汽車走公路時(shí)水產(chǎn)養(yǎng)殖基地獲得的毛利潤(rùn)為
(單位:萬元),求
的分布列和數(shù)學(xué)期望
.
(Ⅱ)假設(shè)你是水產(chǎn)養(yǎng)殖基地的決策者,你選擇哪條公路運(yùn)送海鮮有可能讓水產(chǎn)養(yǎng)殖基地獲得的毛利潤(rùn)更多?
【答案】(Ⅰ)見解析, 萬元;(Ⅱ)走公路
可讓水產(chǎn)養(yǎng)殖基地獲得更多利潤(rùn).
【解析】試題分析:
(Ⅰ)根據(jù)題意得到不堵車時(shí)萬元,堵車時(shí)
萬元,結(jié)合題目中給出的概率得到隨機(jī)變量
的分布列,求得
萬元。(Ⅱ)設(shè)設(shè)走公路
利潤(rùn)為
,同(Ⅰ)中的方法可得到隨機(jī)變量
的分布列,求得
萬元,故應(yīng)選擇走公路
可讓水產(chǎn)養(yǎng)殖基地獲得更多利潤(rùn)。
試題解析:
(I)由題意知,不堵車時(shí)萬元,堵車時(shí)
萬元。
∴ 隨機(jī)變量的分布列為
∴ 萬元.
(利潤(rùn)為
,
由題意得,不堵車時(shí)萬元,
萬元,
∴ 隨機(jī)變量的分布列為:
∴萬元,
∴ .
∴ 走公路可讓水產(chǎn)養(yǎng)殖基地獲得更多利潤(rùn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在
上的偶函數(shù),且當(dāng)
時(shí),
.
(1)已畫出函數(shù)在
軸左側(cè)的圖像,如圖所示,請(qǐng)補(bǔ)出完整函數(shù)
的圖像,并根據(jù)圖像寫出函數(shù)
的增區(qū)間;
⑵寫出函數(shù)的解析式和值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn=1(n∈N),數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1=
,而b2,b5,ba14成等比數(shù)列.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的離心率為
,且橢圓
經(jīng)過點(diǎn)
,已知點(diǎn)
,過點(diǎn)
的動(dòng)直線
與橢圓
相交于
兩點(diǎn),
與
關(guān)于
軸對(duì)稱.
(1)求的方程;
(2)證明: 三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 分別是橢圓
的左、右焦點(diǎn),
是橢圓
的頂點(diǎn),
是直線
與橢圓
的另一個(gè)交點(diǎn),
.
(1)求橢圓的離心率;
(2)已知的面積為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形中,
,
,將
沿
折起,使得平面
平面
,如圖.
(1)求證: ;
(2)若為
中點(diǎn),求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,其中
且
.設(shè)
.
()若
,
,
,求方程
在區(qū)間
內(nèi)的解集.
()若函數(shù)
滿足:圖象關(guān)于點(diǎn)
對(duì)稱,在
處取得最小值,試確定
、
和
應(yīng)滿足的與之等價(jià)的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】提高過江大橋的車輛通行的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度
(單位:輛/千米)
的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),就會(huì)造成堵塞,此時(shí)車流速度為0;當(dāng)
車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng)時(shí),
車流速度是車流密度
的一次函數(shù).
(1)當(dāng)時(shí),求函數(shù)
的表達(dá)式;
(2)如果車流量(單位時(shí)間內(nèi)通過橋上某觀測(cè)點(diǎn)的車輛數(shù)) (單位:輛/小時(shí)),那么當(dāng)車流密度
為多大時(shí),車流量
可以達(dá)到最大,并求出最大值.(精確到
輛/小時(shí)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com