日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù)在區(qū)間上的最小值記為

          1)當(dāng)時(shí),求函數(shù)在區(qū)間上的值域;

          2)求的函數(shù)表達(dá)式;

          3)求的最大值.

          【答案】1;(2;(3.

          【解析】

          1)將代入函數(shù)的解析式,利用二次函數(shù)的性質(zhì)求出函數(shù)在區(qū)間上的最大值和最小值,從而可得出此時(shí)函數(shù)在區(qū)間上的值域;

          2)對(duì)二次函數(shù)的對(duì)稱(chēng)軸與區(qū)間的位置關(guān)系進(jìn)行分類(lèi)討論,分析函數(shù)在區(qū)間上的單調(diào)性,可得出函數(shù)在區(qū)間上的最小值的表達(dá)式;

          3)求出分段函數(shù)在每一段定義域上的值域,可得出該函數(shù)的最大值.

          1)當(dāng)時(shí),

          當(dāng)時(shí),函數(shù)取最小值,即;

          當(dāng)時(shí),函數(shù)取最大值,即.

          因此,函數(shù)在區(qū)間上的值域?yàn)?/span>;

          2)①當(dāng)時(shí),函數(shù)的對(duì)稱(chēng)軸,

          此時(shí),函數(shù)在區(qū)間上單調(diào)遞增,則;

          ②當(dāng)時(shí),函數(shù)的對(duì)稱(chēng)軸,

          此時(shí),函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

          ;

          ③當(dāng)時(shí),函數(shù)的對(duì)稱(chēng)軸,

          此時(shí),函數(shù)在區(qū)間上單調(diào)遞減,則

          綜上所述,;

          3)①當(dāng)時(shí),;

          ②當(dāng)時(shí),;

          當(dāng)時(shí),

          由①②③可知

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),且).

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)求函數(shù)上的最大值.

          【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時(shí), ;當(dāng)時(shí), .

          【解析】試題分析】(I)利用的二階導(dǎo)數(shù)來(lái)研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對(duì)分類(lèi)討論求得函數(shù)在不同取值時(shí)的最大值.

          試題解析】

          (Ⅰ),

          設(shè) ,則.

          , ,∴上單調(diào)遞增,

          從而得上單調(diào)遞增,又∵

          ∴當(dāng)時(shí), ,當(dāng)時(shí), ,

          因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

          (Ⅱ)由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,

          由此可知.

          , ,

          .

          設(shè),

          .

          ∵當(dāng)時(shí), ,∴上單調(diào)遞增.

          又∵,∴當(dāng)時(shí), ;當(dāng)時(shí), .

          ①當(dāng)時(shí), ,即,這時(shí), ;

          ②當(dāng)時(shí), ,即,這時(shí), .

          綜上, 上的最大值為:當(dāng)時(shí), ;

          當(dāng)時(shí), .

          [點(diǎn)睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點(diǎn)有關(guān)的參數(shù)范圍問(wèn)題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點(diǎn),并結(jié)合特殊點(diǎn),從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過(guò)對(duì)方程等價(jià)變形轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問(wèn)題.

          型】解答
          結(jié)束】
          22

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

          (Ⅰ) 寫(xiě)出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

          ( Ⅱ ) 設(shè)直線軸和軸的交點(diǎn)分別為,為圓上的任意一點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在一次數(shù)學(xué)測(cè)驗(yàn)后,班級(jí)學(xué)委對(duì)選答題的選題情況進(jìn)行統(tǒng)計(jì),如下表:

          幾何證

          明選講

          極坐標(biāo)與

          參數(shù)方程

          不等式

          選講

          合計(jì)

          男同學(xué)

          12

          4

          6

          22

          女同學(xué)

          0

          8

          12

          20

          合計(jì)

          12

          12

          18

          42

          (1)在統(tǒng)計(jì)結(jié)果中,如果把幾何證明選講和極坐標(biāo)與參數(shù)方程稱(chēng)為“幾何類(lèi)”,把不等式選講稱(chēng)為“代數(shù)類(lèi)”,我們可以得到如下2×2列聯(lián)表.

          幾何類(lèi)

          代數(shù)類(lèi)

          合計(jì)

          男同學(xué)

          16

          6

          22

          女同學(xué)

          8

          12

          20

          合計(jì)

          24

          18

          42

          能否認(rèn)為選做“幾何類(lèi)”或“代數(shù)類(lèi)”與性別有關(guān),若有關(guān),你有多大的把握?

          (2)在原始統(tǒng)計(jì)結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選答題的同學(xué)中隨機(jī)選出7名同學(xué)進(jìn)行座談.已知這名學(xué)委和2名數(shù)學(xué)課代表都在選做“不等式選講”的同學(xué)中.

          ①求在這名學(xué)委被選中的條件下,2名數(shù)學(xué)課代表也被選中的概率;

          ②記抽取到數(shù)學(xué)課代表的人數(shù)為,求的分布列及數(shù)學(xué)期望

          下面臨界值表僅供參考:

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

          甲說(shuō):“是作品獲得一等獎(jiǎng)”;

          乙說(shuō):“作品獲得一等獎(jiǎng)”;

          丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

          丁說(shuō):“是作品獲得一等獎(jiǎng)”.

          若這四位同學(xué)中只有兩位說(shuō)的話(huà)是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為(萬(wàn)元),它們與投入資金(萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式.今將120萬(wàn)元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投資金額都不低于20萬(wàn)元.

          (Ⅰ)設(shè)對(duì)乙產(chǎn)品投入資金萬(wàn)元,求總利潤(rùn)(萬(wàn)元)關(guān)于的函數(shù)關(guān)系式及其定義域;

          (Ⅱ)如何分配使用資金,才能使所得總利潤(rùn)最大?最大利潤(rùn)為多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】屆世界杯足球賽在俄羅斯進(jìn)行,某校足球協(xié)會(huì)為了解該校學(xué)生對(duì)此次足球盛會(huì)的關(guān)注情況,隨機(jī)調(diào)查了該校名學(xué)生,并將這名學(xué)生分為對(duì)世界杯足球賽“非常關(guān)注”與“一般關(guān)注”兩類(lèi),已知這名學(xué)生中男生比女生多人,對(duì)世界杯足球賽“非常關(guān)注”的學(xué)生中男生人數(shù)與女生人數(shù)之比為,對(duì)世界杯足球賽“一般關(guān)注”的學(xué)生中男生比女生少人.

          (1)根據(jù)題意建立列聯(lián)表,判斷是否有的把握認(rèn)為男生與女生對(duì)世界杯足球賽的關(guān)注有差異?

          (2)該校足球協(xié)會(huì)從對(duì)世界杯足球賽“非常關(guān)注”的學(xué)生中根據(jù)性別進(jìn)行分層抽樣,從中抽取人,再?gòu)倪@人中隨機(jī)選出人參與世界杯足球賽宣傳活動(dòng),求這人中至少有一個(gè)男生的概率.

          附:,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱錐中,,的中點(diǎn).

          (1)證明:平面;

          (2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].

          (1)求圖中的值;

          (2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分,眾數(shù),中位數(shù);

          (3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如下表所示,求數(shù)學(xué)成績(jī)?cè)赱50,90)之外的人數(shù).

          分?jǐn)?shù)段

          [50,60)

          [60,70)

          [70,80)

          [80,90)

          1:1

          2:1

          3:4

          4:5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(2015·山東) 如圖,三棱臺(tái)-中,分別為,的中點(diǎn).

          (1)求證:平面;
          (2)若,,求證:平面。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案