日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 21、某會(huì)議室用5盞燈照明,每盞燈各使用燈泡一只,且型號(hào)相同.假定每盞燈能否正常照明只與燈泡的壽命有關(guān),該型號(hào)的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2.從使用之日起每滿(mǎn)1年進(jìn)行一次燈泡更換工作,只更換已壞的燈泡,平時(shí)不換.
          (Ⅰ)在第一次燈泡更換工作中,求不需要換燈泡的概率和更換2只燈泡的概率;
          (Ⅱ)在第二次燈泡更換工作中,對(duì)其中的某一盞燈來(lái)說(shuō),求該盞燈需要更換燈泡的概率;
          (Ⅲ)當(dāng)p1=0.8,p2=0.3時(shí),求在第二次燈泡更換工作,至少需要更換4只燈泡的概率(結(jié)果保留兩個(gè)有效數(shù)字).
          分析:(I)一只燈泡需要不需要換,可以看做一個(gè)獨(dú)立重復(fù)試驗(yàn),根據(jù)公式得到在第一次更換燈泡工作中,不需要換燈泡的概率和需要更換2只燈泡的概率.
          (II)由題意知在第二次燈泡更換工作中,對(duì)其中的某一盞燈來(lái)說(shuō),該盞燈需要更換燈泡是兩個(gè)獨(dú)立事件,包括兩種情況,這兩種情況是互斥的,根據(jù)獨(dú)立重復(fù)試驗(yàn)和互斥事件的概率公式,得到結(jié)果.
          (III)由題意知,至少需要更換4只燈泡包括需要環(huán)4只,需要換5只,根據(jù)獨(dú)立重復(fù)試驗(yàn)的概率公式寫(xiě)出結(jié)果.
          解答:解:因?yàn)樵撔吞?hào)的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2
          所以壽命為1~2年的概率應(yīng)為p1-p2.其分布列為:

          (I)一只燈泡需要不需要換,可以看做一個(gè)獨(dú)立重復(fù)試驗(yàn),根據(jù)公式得到
          在第一次更換燈泡工作中,不需要換燈泡的概率為p15,需要更換2只燈泡的概率為C52p13(1-p12
          (II)在第二次燈泡更換工作中,對(duì)其中的某一盞燈來(lái)說(shuō),該盞燈需要更換燈泡是兩個(gè)獨(dú)立事件的和事件:
          ①在第1、2次都更換了燈泡的概率為(1-p12
          ②在第一次未更換燈泡而在第二次需要更換燈泡的概率為p1(1-p2).
          故所求的概率為p3=(1-p12+p1(1-p2).
          (III)由(II)當(dāng)p1=0.8,p2=0.3時(shí),在第二次燈泡更換工作中,對(duì)其中的某一盞燈來(lái)說(shuō),該盞燈需要更換燈泡的概率p3=(1-p12+(p1-p2)=0.54.
          在第二次燈泡更換工作,至少換4只燈泡包括換5只和換4只兩種情況:
          ①換5只的概率為p35=0.545=0.046;
          ②換4只的概率為C51p34(1-p3)=5×0.544(1-0.54)=0.196,
          故至少換4只燈泡的概率為:p4=0.046+0.196=0.242.
          即滿(mǎn)兩年至少需要換4只燈泡的概率為0.242.
          點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列,考查獨(dú)立重復(fù)試驗(yàn)的概率,考查相互獨(dú)立事件同時(shí)發(fā)生的概率,考查互斥事件的概率,是一個(gè)綜合題,題干比較長(zhǎng),需要認(rèn)真讀題來(lái)理解題意.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (05年湖北卷文)(12分)

          某會(huì)議室用5盞燈照明,每盞燈各使用燈泡一只,且型號(hào)相同.假定每盞燈能否正常照明只與燈泡的壽命有關(guān),該型號(hào)的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2.從使用之日起每滿(mǎn)1年進(jìn)行一次燈泡更換工作,只更換已壞的燈泡,平時(shí)不換.

             (Ⅰ)在第一次燈泡更換工作中,求不需要換燈泡的概率和更換2只燈泡的概率;

             (Ⅱ)在第二次燈泡更換工作中,對(duì)其中的某一盞燈來(lái)說(shuō),求該盞燈需要更換燈泡的概率;

             (Ⅲ)當(dāng)p1=0.8,p2=0.3時(shí),求在第二次燈泡更換工作,至少需要更換4只燈泡的概率(結(jié)果保留兩個(gè)有效數(shù)字).

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          某會(huì)議室用5盞燈照明,每盞燈各使用燈泡一只,且型號(hào)相同.假定每盞燈能否正常照明只與燈泡的壽命有關(guān),該型號(hào)的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2.從使用之日起每滿(mǎn)1年進(jìn)行一次燈泡更換工作,只更換已壞的燈泡,平時(shí)不換.?

          (1)在第一次燈泡更換工作中,求不需更換燈泡的概率和更換2只燈泡的概率;?

          (2)在第二次燈泡更換工作中,對(duì)其中的某一盞燈來(lái)說(shuō),求該盞燈需要更換燈泡的概率;?

          (3)當(dāng)p1=0.8,p2=0.3時(shí),求在第二次燈泡更換工作中,至少需要更換4只燈泡的概率(結(jié)果保留兩個(gè)有效數(shù)字).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:湖北省高考真題 題型:解答題

          某會(huì)議室用5盞燈照明,每盞燈各使用燈泡一只,且型號(hào)相同。假定每盞燈能否正常照明只與燈泡的壽命有關(guān),該型號(hào)的燈泡壽命為1年以上的概率為p1,壽命為2年以上的概率為p2;從使用之日起每滿(mǎn)1年進(jìn)行一次燈泡更換工作,只更換已壞的燈泡,平時(shí)不換,
          (Ⅰ)在第一次燈泡更換工作中,求不需要換燈泡的概率和更換2只燈泡的概率;
          (Ⅱ)在第二次燈泡更換工作中,對(duì)其中的某一盞燈來(lái)說(shuō),求該盞燈需要更換燈泡的概率;
          (Ⅲ)當(dāng)p1=0.8,p2=0.3時(shí),求在第二次燈泡更換工作中,至少需要更換4只燈泡的概率(結(jié)果保留兩個(gè)有效數(shù)字)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          某會(huì)議室用5盞燈照明,每盞燈各使用燈泡一只,且型號(hào)相同.假定每盞燈能否正常照明只與燈泡的壽命有關(guān),該型號(hào)的燈泡壽命為1年以上的概率為P1,壽命為2年以上的概率為P2.從使用之日起每滿(mǎn)1年進(jìn)行一次燈泡更換工作,只更換已壞的燈泡,平時(shí)不換.

          (1)在第一次燈泡更換工作中,求不需要換燈泡的概率和更換2只燈泡的概率;

          (2)在第二次燈泡更換工作中,對(duì)其中的某一盞燈來(lái)說(shuō),求該盞燈需要更換燈泡的概率;

          (3)當(dāng)P1=0.8,P2=0.3時(shí),求在第二次燈泡更換工作,至少需要更換4只燈泡的概率(結(jié)果保留兩個(gè)有效數(shù)字).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案