日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 任意給3個(gè)正實(shí)數(shù),設(shè)計(jì)一個(gè)算法,判斷分別以這3個(gè)數(shù)為三邊邊長的三角形是否存在,畫出這個(gè)算法的流程圖

          答案:
          解析:

            答案:流程圖如下:

            思路解析:判斷分別以這3個(gè)數(shù)為三邊邊長的三角形是否存在,只要驗(yàn)證這三個(gè)數(shù)當(dāng)中任意兩個(gè)數(shù)的和是否大于第三個(gè)數(shù),這就需要用到選擇結(jié)構(gòu)


          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•鹽城二模)設(shè)Sn是各項(xiàng)均為非零實(shí)數(shù)的數(shù)列{an}的前n項(xiàng)和,給出如下兩個(gè)命題上:命題p:{an}是等差數(shù)列;命題q:等式
          1
          a1a2
          +
          1
          a2a3
          +…+
          1
          anan+1
          =
          kn+b
          a1an+1
          對(duì)任意n(n∈N*)恒成立,其中k,b是常數(shù).
          (1)若p是q的充分條件,求k,b的值;
          (2)對(duì)于(1)中的k與b,問p是否為q的必要條件,請(qǐng)說明理由;
          (3)若p為真命題,對(duì)于給定的正整數(shù)n(n>1)和正數(shù)M,數(shù)列{an}滿足條件
          a
          2
          1
          +
          a
          2
          n+1
          ≤M
          ,試求Sn的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:鹽城二模 題型:解答題

          設(shè)Sn是各項(xiàng)均為非零實(shí)數(shù)的數(shù)列{an}的前n項(xiàng)和,給出如下兩個(gè)命題上:命題p:{an}是等差數(shù)列;命題q:等式
          1
          a1a2
          +
          1
          a2a3
          +…+
          1
          anan+1
          =
          kn+b
          a1an+1
          對(duì)任意n(n∈N*)恒成立,其中k,b是常數(shù).
          (1)若p是q的充分條件,求k,b的值;
          (2)對(duì)于(1)中的k與b,問p是否為q的必要條件,請(qǐng)說明理由;
          (3)若p為真命題,對(duì)于給定的正整數(shù)n(n>1)和正數(shù)M,數(shù)列{an}滿足條件
          a21
          +
          a2n+1
          ≤M
          ,試求Sn的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年江蘇省鹽城市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

          設(shè)Sn是各項(xiàng)均為非零實(shí)數(shù)的數(shù)列{an}的前n項(xiàng)和,給出如下兩個(gè)命題上:命題p:{an}是等差數(shù)列;命題q:等式對(duì)任意n(n∈N*)恒成立,其中k,b是常數(shù).
          (1)若p是q的充分條件,求k,b的值;
          (2)對(duì)于(1)中的k與b,問p是否為q的必要條件,請(qǐng)說明理由;
          (3)若p為真命題,對(duì)于給定的正整數(shù)n(n>1)和正數(shù)M,數(shù)列{an}滿足條件,試求Sn的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(北京卷解析版) 題型:解答題

          設(shè)A是由m×n個(gè)實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個(gè)數(shù)的絕對(duì)值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

          對(duì)于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

          記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

          (1)   對(duì)如下數(shù)表A,求K(A)的值;

          1

          1

          -0.8

          0.1

          -0.3

          -1

           

          (2)設(shè)數(shù)表A∈S(2,3)形如

          1

          1

          c

          a

          b

          -1

           

          求K(A)的最大值;

          (3)給定正整數(shù)t,對(duì)于所有的A∈S(2,2t+1),求K(A)的最大值。

          【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,

          所以

          (2)  不妨設(shè).由題意得.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以,

          于是,

              

          所以,當(dāng),且時(shí),取得最大值1。

          (3)對(duì)于給定的正整數(shù)t,任給數(shù)表如下,

          任意改變A的行次序或列次序,或把A中的每一個(gè)數(shù)換成它的相反數(shù),所得數(shù)表

          ,并且,因此,不妨設(shè),

          得定義知,,

          又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">

          所以

               

               

          所以,

          對(duì)數(shù)表

          1

          1

          1

          -1

          -1

           

          ,

          綜上,對(duì)于所有的,的最大值為

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          給出下列四個(gè)命題:

          ①函數(shù)的圖象關(guān)于直線對(duì)稱;

          ②設(shè)函數(shù)f(x)是定義在R上的以5為周期的奇函數(shù),若>1,,則a的取值范圍是(0,3) ;

          ③若對(duì)于任意實(shí)數(shù)x,都有,且在(-∞,0]上是減函數(shù),則

          ④函數(shù)上恒為正,則實(shí)數(shù)a的取值范圍是;

          其中真命題的序號(hào)是                 。(填上所有真命題的序號(hào))

          查看答案和解析>>

          同步練習(xí)冊(cè)答案