日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四棱錐中,平面ABCD,底面ABCD是菱形,,.

          (1)求證:平面PAC;

          (2)若,求所成角的余弦值;

          (3)當平面PBC與平面PDC垂直時,求PA的長.

           

          【答案】

          (1)證明見解析;(2);(3)

          【解析】

          試題分析:(1)要證線面垂直,就是要證這條直線與平面內(nèi)的兩條相交直線垂直,這里由于四邊形是菱形,所以,另外一條直線當然考慮(或者),本題中應該是;(2)求異面直線所成的角,一般可通過平移變成相交直線所成的角,考慮到第(3)小題問題,且題中有垂直的直線,故考慮建立空間直角坐標系(以的交點為坐標原點,軸,軸,過平行的直線為軸),則所成角就是的夾角((銳角(或其補角)或直角),平面與平面垂直就是它們的法向量垂直,即它們的法向量的數(shù)量積為0.

          試題解析:(1)證明:因為四邊形是菱形,所以,又因為平面,所以,而,所以平面.

          (2)設,因為,

          所以,如圖,以為坐標原點,建立空間直角坐標系,則,,,,設所成的角為,則

          (3)由(2)知.則設平面的法

          向量,所以,

          所以同理,平面的法向量,因為平面,所以,即解得,所以

          考點:(1)線面垂直;(2)異面直線所成的角;(3)兩平面垂直.

           

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          18、如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為2的菱形,∠BAD=60°,N是PB中點,過A、N、D三點的平面交PC于M.
          (1)求證:DP∥平面ANC;
          (2)求證:M是PC中點;
          (3)求證:平面PBC⊥平面ADMN.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為4的菱形,且∠BAD=60°,N是PB的中點,過A,D,N的平面交PC于M,E是AD的中點.
          (1)求證:BC⊥平面PEB;
          (2)求證:M為PC的中點.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在四棱錐中,側(cè)面

          是正三角形,且與底面垂直,底面是邊長為2的菱形,中點,過、、三點的平面交. 

          (1)求證:;   (2)求證:中點;(3)求證:平面⊥平面.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (本小題滿分12分)

          如圖,在四棱錐中,底面為菱形,的中點。

             (1)點在線段上,,

          試確定的值,使平面;

             (2)在(1)的條件下,若平面

          面ABCD,求二面角的大小。

           

           

           

           

           

           

           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (本小題滿分12分)

          如圖,在四棱錐中,底面為菱形,,的中點。

             (1)點在線段上,,

          試確定的值,使平面;

             (2)在(1)的條件下,若平面

          面ABCD,求二面角的大小。

          查看答案和解析>>

          同步練習冊答案