日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (12分)已知直三棱柱ABC-A1B1C1中,A1C與底面ABC所成的角為,AB=BC=

          ∠ABC=,設(shè)E、F分別是AB、A1C的中點(diǎn)。

             (1)求證:BC⊥A1E;

             (2)求證:EF∥平面BCC1B1;

             (3)求以EC為棱,B1EC與BEC為面的二面角正切值。


          解析:證法一:向量法

          證法二:(1)由已知有BC⊥AB,BC⊥B1B,∴BC⊥平面ABB1A1

          又A1E在平面ABB1A1內(nèi)     ∴有BC⊥A1E

          (2)取B1C的中點(diǎn)D,連接FD、BD

          ∵F、D分別是AC1、B1C之中點(diǎn),∴FD∥A1B1∥BE

          ∴四邊形EFBD為平行四邊形    ∴EF∥BD

          又BD平面BCC1B1   

          ∴EF∥面BCC1B1

          (3)過B1作B1H⊥CEFH,連BH,又B1B⊥面BAC,B1H⊥CE

          ∴BH⊥EC    ∴∠B1HB為二面角B1-EC-B平面角

          在Rt△BCE中有BE=,BC=,CE=,BH=

          又∠A1CA=      ∴BB1=AA1=AC=2   

          ∴tan∠B1HB=

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CC1、AB中點(diǎn).
          (Ⅰ)求證:CF⊥BB1;
          (Ⅱ)求四棱錐A-ECBB1的體積;
          (Ⅲ)判斷直線CF和平面AEB1的位置關(guān)系,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直三棱柱ABC-A1B1C1的所有棱長(zhǎng)都相等,且D,E,F(xiàn)分別為BC,BB1,AA1的中點(diǎn).
          (I) 求證:平面B1FC∥平面EAD;
          (II)求證:BC1⊥平面EAD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC,AB,AA′兩兩垂直,E,F(xiàn),H分別是AC,AB,BC的中點(diǎn),
          (I)證明:EF⊥AH;    
          (II)求四面體E-FAH的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知直三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)為2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中點(diǎn).
          (Ⅰ)求異面直線AB和C1D所成的角(用反三角函數(shù)表示);
          (Ⅱ)若E為AB上一點(diǎn),試確定點(diǎn)E在AB上的位置,使得A1E⊥C1D;
          (Ⅲ)在(Ⅱ)的條件下,求點(diǎn)D到平面B1C1E的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知直三棱柱ABC-A1B1C1中,AB=AC;M.N.P分別是棱BC.CC1.B1C1的中點(diǎn).A1Q=3QA, BC=
          2
          AA1

          (Ⅰ)求證:PQ∥平面ANB1
          (Ⅱ)求證:平面AMN⊥平面AMB1

          查看答案和解析>>

          同步練習(xí)冊(cè)答案