日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知集合A={x|x2﹣2x﹣8≤0},B={x| <0},U=R.
          (1)求A∪B;
          (2)求(UA)∩B;
          (3)如果C={x|x﹣a>0},且A∩C≠,求a的取值范圍.

          【答案】
          (1)解:A={x|x2﹣2x﹣8≤0}={x|﹣2≤x≤4},

          B={x| <0}={x|﹣1<x<6}

          A∪B={x|﹣2≤x<6}


          (2)解:CUA={x|x<﹣2或x>4},

          (CUA)∩B={x|4<x<6}


          (3)解:C={x|x﹣a>0}={x|x>a},

          且A∩C≠

          所以a的取值范圍是a<4


          【解析】化簡集合A、B,(1)根據(jù)并集的定義求出A∪B;(2)根據(jù)補(bǔ)集與交集的定義進(jìn)行計(jì)算即可;(3)化簡集合C,根據(jù)A∩C≠求出a的取值范圍.
          【考點(diǎn)精析】關(guān)于本題考查的交、并、補(bǔ)集的混合運(yùn)算,需要了解求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能得出正確答案.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知g(x)=﹣x2﹣3,f(x)是二次函數(shù),f(x)+g(x)是奇函數(shù),且當(dāng)x∈[﹣1,2]時(shí),f(x)的最小值為1,求f(x)的表達(dá)式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)t滿足f(0)=f(2)=2,f(1)=1.
          (1)求函數(shù)f(x)的解析式;
          (2)當(dāng)x∈[﹣1,2]時(shí),求y=f(x)的值域;
          (3)設(shè)h(x)=f(x)﹣mx在[1,3]上是單調(diào)函數(shù),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
          (1)求f(x)的解析式;
          (2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
          (3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)= +lg(3x+1)的定義域是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在R上的奇函數(shù)f(x),當(dāng)x∈(﹣∞,0)時(shí),f(x)=﹣x2+mx﹣1.
          (1)當(dāng)x∈(0,+∞)時(shí),求f(x)的解析式;
          (2)若方程f(x)=0有五個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2annN*).

          1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;

          (2)若bn=2n+1an+2n+1,數(shù)列{bn}的前n項(xiàng)和為Tn.求滿足不等式2010n的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}.
          (1)求A∩B,A∪B;
          (2)如果A∩C≠,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a+a1= (a>1)
          (1)求下列各式的值:
          (Ⅰ)a +a ;
          (Ⅱ)a +a ;
          (2)已知2lg(x﹣2y)=lgx+lgy,求loga 的值.

          查看答案和解析>>

          同步練習(xí)冊答案