已知等差數(shù)列{an}的前n項和為Sn,S7=49,a4和a8的等差中項為2.
(1)求an及Sn;
(2)證明:當(dāng)n≥2時,有.
(1) ; (2)見解析
解析試題分析:(1) 設(shè)等差數(shù)列的公差為
,由題設(shè)列方程組,解出
,進而求出
和
;
(2)放縮法裂項求和并證不等式:思路一:
思路二:
試題解析:
解:(1)解法一:設(shè)等差數(shù)列的公差為
,
所以有, 2分
解得, 4分
所以 6分
解法二: 1分
2分
3分
4分
所以 6分
(2)證明:方法一:由(Ⅰ)知,
①當(dāng)時,
原不等式亦成立 7分
②當(dāng)時,
,
9分
=
=
= 2分
12分
方法二:由(Ⅰ)知,
當(dāng)時,
8分
=
=
= 2分
12分
考點:1、等差數(shù)列;2、裂項求和;3、放縮法證明不等式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{ }、{
}滿足:
.
(1)求
(2)證明:數(shù)列{}為等差數(shù)列,并求數(shù)列
和{
}的通項公式;
(3)設(shè),求實數(shù)
為何值時
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是首項為a,公差為d的等差數(shù)列
,
是其前n項的和。記
,其中c為實數(shù)。
(1)若,且
成等比數(shù)列,證明:
;
(2)若是等差數(shù)列,證明:
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項
,公差
,且
、
、
分別是等比數(shù)列
的
、
、
.
(1)求數(shù)列和
的通項公式;
(2)設(shè)數(shù)列對任意正整數(shù)
均有
成立,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
從數(shù)列中抽出一些項,依原來的順序組成的新數(shù)列叫數(shù)列
的一個子列.
(1)寫出數(shù)列的一個是等比數(shù)列的子列;
(2)設(shè)是無窮等比數(shù)列,首項
,公比為
.求證:當(dāng)
時,數(shù)列
不存在
是無窮等差數(shù)列的子列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是公差不為0的等差數(shù)列,a1=2且a2,a3,a4+1成等比數(shù)列。
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列
的前
項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com