日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2011•洛陽二模)為了普及環(huán)保知識,增強環(huán)保意識,某大學從理工類專業(yè)的A班和文史類專業(yè)的B班各抽取20名同學參加環(huán)保知識測試.兩個班同學的成績(百分制)的莖葉圖如圖所示:

          按照大于或等于80分為優(yōu)秀,80分以下為非優(yōu)秀統(tǒng)計成績.
          (1)完成下面2×2列聯(lián)表,并判斷能否有95%的把握認為環(huán)保知識測試成績與專業(yè)有

          成績與專業(yè)列聯(lián)表
          優(yōu)秀 非優(yōu)秀 總計
          A班 20
          B班 20
          總計 40
          (2)從B班參加測試的20人中選取2人參加某項活動,2人中成績優(yōu)秀的人數(shù)記為X,
          求X的分布列與數(shù)學期望.
          附:K2=
          n(ad-bc)2
          (a+b)(c+d)(a+c)(b+d)

          P(K2≥k0 0.050 0.010 0.001
           k0 3.841 6.635 10.828
          分析:(1)由題設條件作出成績與專業(yè)列聯(lián)表,根據(jù)列聯(lián)表中的數(shù)據(jù),得到k=
          40(14×13-6×7)2
          21×19×20×20
          ≈4.192>3.841.由此得到有95%的把握認為環(huán)保知識測試與專業(yè)有關.
          (2)由題設知X的可能取值為0,1,2,分別求出P(X=0),P(X=1),P(X=2),由此能求出X的分布列和EX.
          解答:解:(1)成績與專業(yè)列聯(lián)表
          優(yōu)秀 非優(yōu)秀 總計
          A班 14 6 20
          B班 7 13 20
          總計 21 19 40
          根據(jù)列聯(lián)表中的數(shù)據(jù),得到
          k=
          40(14×13-6×7)2
          21×19×20×20
          ≈4.192>3.841.
          ∴有95%的把握認為環(huán)保知識測試與專業(yè)有關.
          (2)由題設知X的可能取值為0,1,2,
          P(X=0)=
          C
          2
          13
          C
          2
          20
          =
          39
          95
          ,
          P(X=1)=
          C
          1
          7
          C
          1
          13
          C
          2
          20
          =
          91
          190

          P(X=2)=
          C
          2
          7
          C
          2
          20
          =
          21
          190
          ,
          ∴X的分布列:
           X  0  1
           P  
          39
          95
           
          91
          190
           
          21
          190
          EX=0×
          39
          95
          +1×
          91
          190
          +3×
          21
          190
          =
          133
          190
          點評:本題考查離散型隨機變量的分布列和數(shù)學期望,解題時要認真審題,仔細解答,注意排列組合知識的合理運用.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2011•洛陽二模)設函數(shù)f(x)的定義域為R,f(x)=
          x,0≤x≤1
          (
          1
          2
          )x-1,-1≤x<0.
          且對任意的x∈R都有f(x+1)=f(x-1),若在區(qū)間[-1,3]上函數(shù)g(x)=f(x)-mx-m恰有四個不同零點,則實數(shù)m的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•洛陽二模)曲線y=x2ex+2x+1在點P(0,1)處的切線與x軸交點的橫坐標是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•洛陽二模)已知函數(shù)f(x)=(ax2-2x+a)e-x
          (I)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
          (Ⅱ)設g(x)=-
          f′(x)
          e-x
          -a-2,h(x)=
          1
          2
          x2-2x-lnx
          ,若x>l時總有g(x)<h(x),求實數(shù)c范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•洛陽二模)從8名女生,4名男生中選出3名學生組成課外小組,如果按性別比例分層抽樣,則不同的抽取方法種數(shù)為
          112
          112
          . (用數(shù)字作答)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•洛陽二模)設函數(shù)f(x)=|2x+1|-|x-2|.
          (1)若關于x的不等式a≥f(x)存在實數(shù)解,求實數(shù)a的取值范圍;
          (2)若?x∈R,f(x)≥-t2-
          52
          t-1
          恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習冊答案