日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ax3-bx2的圖象過(guò)點(diǎn)P(-1,2),且在點(diǎn)P處的切線(xiàn)恰與直線(xiàn)x-3y=0垂直.則函數(shù)f(x)的解析式為
          f(x)=x3+3x2
          f(x)=x3+3x2
          分析:由f(x)=ax3-bx2,知f′(-1)=3a+2b,由函數(shù)f(x)=ax3-bx2的圖象過(guò)點(diǎn)P(-1,2),且在點(diǎn)P處的切線(xiàn)恰與直線(xiàn)x-3y=0垂直,知
          -a-b=2
          3a+2b=-3
          ,由此能求出函數(shù)f(x)的解析式.
          解答:解:∵f(x)=ax3-bx2,
          ∴f′(x)=3ax2-2bx,
          ∴f′(-1)=3a+2b,
          ∵函數(shù)f(x)=ax3-bx2的圖象過(guò)點(diǎn)P(-1,2),
          且在點(diǎn)P處的切線(xiàn)恰與直線(xiàn)x-3y=0垂直,
          -a-b=2
          3a+2b=-3
          ,
          解得a=1,b=-3.
          ∴f(x)=x3+3x2
          故答案為:f(x)=x3+3x2
          點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求曲線(xiàn)上某點(diǎn)處的切線(xiàn)方程,具體涉及到導(dǎo)數(shù)的幾何意義,直線(xiàn)垂直的性質(zhì)等知識(shí)點(diǎn),是基礎(chǔ)題.解題地要認(rèn)真審題,仔細(xì)解答.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時(shí),求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線(xiàn)的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿(mǎn)足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案