【題目】在平面直角坐標(biāo)系中,以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知曲線
,直線
.
(1)將曲線上所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的2倍、
倍后得到曲線
,請寫出直線
,和曲線
的直角坐標(biāo)方程;
(2)若直線經(jīng)過點(diǎn)
且
與曲線
交于點(diǎn)
,求
的值.
【答案】(1),
;(2)2
【解析】分析:(1)根據(jù)極坐標(biāo)和直角坐標(biāo)系間的轉(zhuǎn)化公式及變換公式可得所求的方程.(2)由題意可求得直線的參數(shù)方程,將其代入曲線
的方程消元后得到關(guān)于參數(shù)
的二次方程,然后根據(jù)參數(shù)的幾何意義可得所求.
詳解:(1)將代入
,可得
,
∴直線的直角坐標(biāo)方程為
.
設(shè)曲線上任一點(diǎn)坐標(biāo)為
,則
,所以
,
代入得
,
所以的方程為
.
(2)直線:
的傾斜角為
,
由題意可知直線的參數(shù)方程為
(
為參數(shù)),
把(
為參數(shù))代入曲線
的方程整理得
.
設(shè)點(diǎn)對應(yīng)的參數(shù)分別為
,
則,
由直線參數(shù)的幾何意義可知
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以
為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
;直線
的參數(shù)方程為
(
為參數(shù)),直線
與曲線
分別交于
,
兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)若點(diǎn)的極坐標(biāo)為
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的定義域;
(2)當(dāng)時(shí),解關(guān)于x的不等式:
(3)當(dāng)時(shí),不等式
對任意實(shí)數(shù)
恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|),x
為f(x)的零點(diǎn),x
為y=f(x)圖象的對稱軸,且f(x)在(
)上單調(diào),則ω的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】偶函數(shù)定義域?yàn)?/span>
,其導(dǎo)函數(shù)是
,當(dāng)
時(shí),有
,則關(guān)于
的不等式
的解集為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,
,
,
為
的中點(diǎn).
(1)證明:平面
;
(2)若點(diǎn)在棱
上,且
,求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在研究函數(shù)f(x)=(x∈R)時(shí),分別給出下面幾個(gè)結(jié)論:
①等式f(-x)=-f(x)在x∈R時(shí)恒成立;
②函數(shù)f(x)的值域?yàn)椋?/span>-1,1);
③若x1≠x2,則一定有f(x1)≠f(x2);
④方程f(x)=x在R上有三個(gè)根.
其中正確結(jié)論的序號有______.(請將你認(rèn)為正確的結(jié)論的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>
上的奇函數(shù),且
.
(1)用定義證明:函數(shù)在
上是增函數(shù);
(2)若實(shí)數(shù)t滿足求實(shí)數(shù)t的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn),定直線
:
,動(dòng)圓
過點(diǎn)
,且與直線
相切.
(Ⅰ)求動(dòng)圓的圓心軌跡
的方程;
(Ⅱ)過點(diǎn)的直線與曲線
相交于
,
兩點(diǎn),分別過點(diǎn)
,
作曲線
的切線
,
,兩條切線相交于點(diǎn)
,求
外接圓面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com