日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,四棱錐SABCD中,底面ABCD是直角梯形,∠BAD=∠ADC90°,ABADa,DC2a,SDaSD⊥平面ABCD

           。1)證明:該四棱錐的四個側(cè)面都是直角三角形;

           。2)設(shè)MSA,SMx,平面CDMSBP,證明四邊形CDMP也是直角梯形,并用ax表示;

           。3x為何值時,CM最短,并求出其最短距離

           

          答案:
          解析:

          分析(1)△SDA、△SAB、△SDC顯然是直角三角形,關(guān)鍵要證△SBC也是直角三角形,我們可以用勾股定理逆定理來證明;(2)證明CDMP是直角梯形關(guān)鍵要證MPCD,這就要證明CD∥平面SAB;(3)在Rt△CDM中利用勾股定理表示出,用二次函數(shù)極值求CM最短距離,

          證明(1)SD⊥平面ABCDSDDC,SDDA

            

            因此,△SDC、△SDA、△SAB是直角三角形.

            ∵  SA

              BC,

              SB,

              SC

            ∴  ,

            ∴  △SBC也是直角三角形,從而棱錐的四個側(cè)面都是直角三角形 

            CDMP是直角梯形.

            ∵  MPAB,∴  ,

            MP

            ,

            

               

          解  (3)∵  Rt△CDM中,∠CDM=90°,

            ∴ 

                

            因此,當(dāng)x時,CM最小值為

           


          提示:

           

           


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點,平面EDC⊥平面SBC.
          (Ⅰ)證明:SE=2EB;
          (Ⅱ)求二面角A-DE-C的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,四棱錐S-ABCD的底面是邊長為3的正方形,SD丄底面ABCD,SB=3
          3
          ,點E、G分別在AB,SG 上,且AE=
          1
          3
          AB  CG=
          1
          3
          SC.
          (1)證明平面BG∥平面SDE;
          (2)求面SAD與面SBC所成二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•醴陵市模擬)如圖,四棱錐S-ABCD的底面是矩形,SA⊥底面ABCD,P為BC邊的中點,AD=2,AB=1.SP與平面ABCD所成角為
          π4
          . 
          (1)求證:平面SPD⊥平面SAP;
          (2)求三棱錐S-APD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,四棱錐S-ABCD底面ABCD是正方形,SA⊥底面ABCD,E是SC上一點,且SE=2EC,SA=6,AB=2.
          (1)求證:平面EBD⊥平面SAC;
          (2)求三棱錐E-BCD的體積V.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2006•西城區(qū)二模)如圖,四棱錐S-ABCD中,平面SAC與底面ABCD垂直,側(cè)棱SA、SB、SC與底面ABCD所成的角均為45°,AD∥BC,且AB=BC=2AD.
          (1)求證:四邊形ABCD是直角梯形;
          (2)求異面直線SB與CD所成角的大。
          (3)求直線AC與平面SAB所成角的大。

          查看答案和解析>>

          同步練習(xí)冊答案