日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知向量
          m
          =(sinB,1-cosB)與向量
          n
          =(2,0)的夾角為
          π
          3
          ,其中A、B、C是△ABC的內(nèi)角.
          (Ⅰ)求角B的大。
          (Ⅱ)求sinA+sinC的取值范圍.
          分析:(Ⅰ)根據(jù)兩向量的夾角及兩向量的求出兩向量的數(shù)量積,然后再利用平面向量的數(shù)量積的運(yùn)算法則計(jì)算,兩者計(jì)算的結(jié)果相等,兩邊平方且利用同角三角函數(shù)間的基本關(guān)系化簡(jiǎn),得到關(guān)于cosB的方程,求出方程的解即可得到cosB的值,由B的范圍,利用特殊角的三角函數(shù)值即可求出B的度數(shù);
          (Ⅱ)由B的度數(shù),把所求的式子利用三角形的內(nèi)角和定理化為關(guān)于A的式子,再利用兩角差的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn),最后利用兩角和的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),由A的范圍求出這個(gè)角的范圍,根據(jù)正弦函數(shù)的圖象可知正弦函數(shù)值的范圍,進(jìn)而得到所求式子的范圍.
          解答:解:(Ⅰ)∵
          m
          n
          =2sinB
          ,(1分)
          m
          n
          =
          sin2B+(1-cosB)2
          ×2×
          1
          2
          =
          2-2cosB
          ,(2分)
          ∴2sinB=
          2-2cosB
          化簡(jiǎn)得:2cos2B-cosB-1=0,
          ∴cosB=1(舍去)或cosB=-
          1
          2
          ,(4分)
          又∵B∈(0,π),∴B=
          2
          3
          π
          ;(5分)
          (Ⅱ)sinA+sinC=sinA+sin(
          π
          3
          -A)=sinA+
          3
          2
          cosA-
          1
          2
          sinA=
          1
          2
          sinA+
          3
          2
          cosA=sin(A+
          π
          3
          )
          (8分)
          0<A<
          π
          3
          ,∴
          π
          3
          <A+
          π
          3
          2
          3
          π

          3
          2
          <sin(A+
          π
          3
          )≤1
          ,
          sinA+sinC∈(
          3
          2
          ,1]
          (10分)
          點(diǎn)評(píng):此題考查了平面向量的數(shù)量積的運(yùn)算,向量的數(shù)量積表示向量的夾角,三角函數(shù)的恒等變換以及同角三角函數(shù)間基本關(guān)系的運(yùn)用.學(xué)生做題時(shí)注意角度的范圍,熟練掌握三角函數(shù)公式,牢記特殊角的三角函數(shù)值,掌握正弦函數(shù)的值域.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量
          m
          =(sinθ,2cosθ),
          n
          =(
          3
          ,-
          1
          2

          (Ⅰ)當(dāng)θ∈[0,π]時(shí),求函數(shù)f(θ)=
          m
          ×
          n
          的值域;
          (Ⅱ)若
          m
          n
          ,求sin2θ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量
          m
          =(sin(A-B),sin(
          π
          2
          -A)
          ),
          n
          =(1,2sinB),且
          m
          n
          =-sin2C,其中A、B、C分別為△ABC的三邊a、b、c所對(duì)的角.
          (Ⅰ)求角C的大;
          (Ⅱ)若sinA+sinB=
          3
          2
          sinC
          ,且S△ABC=
          3
          ,求邊c的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量m=(sinωx,cosωx),n=(cosωx,
          3
          cosωx)且0<ω<2,函數(shù)f(x)=m•n,且f(
          π
          3
          )=
          3
          2

          (Ⅰ)求ω;
          (Ⅱ)將函數(shù)y=g(x)的圖象向右平移
          π
          3
          個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
          1
          4
          ,得到函數(shù)y=f(x)的圖象,求函數(shù)g(x)的解析式及其在[-
          π
          3
          ,
          π
          3
          ]上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量
          m
          =(sinωx,1),
          n
          =(
          3
          Acos
          ωx,
          A
          2
          cos2
          ωx)(A>0,ω>0),函數(shù)f(x)=
          m
          n
          的最大值為3,且其圖象相鄰兩條對(duì)稱軸之間的距離為π.
          (I)求函數(shù)f(x)的解析式;
          (II)將函數(shù)y=f(x)的圖象向左平移
          π
          6
          個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
          1
          2
          倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.
          (1)求函數(shù)g(x)的單調(diào)遞減區(qū)間;
          (2)求函數(shù)g(x)在[
          π
          4
          π
          2
          ]
          上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量m=(cosθ,sinθ),n=(-sinθ,cosθ),θ∈(π,2π),且|m+n|=,求cos(+)的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案