已知函數(shù),
.
(1)當時,求曲線
在點
處的切線方程;
(2)若在區(qū)間
上是減函數(shù),求
的取值范圍.
(1);(2)
或
.
解析試題分析:(I)求出當時函數(shù)的導(dǎo)數(shù)
即切線斜率,代入點斜式;(II)求導(dǎo)解得函數(shù)的兩個極值點
和
因為
異號,分
,
,
討論.
(1)當時,
,又
,所以
.又
,所以所求切線方程為
,即
.所以曲線
在點
處的切線方程為
.(2)因為
,令
,得
或
.當
時,
恒成立,不符合題意. 當
時,
的單調(diào)遞減區(qū)間是
,若
在區(qū)間
上是減函數(shù),則
解得
.當
時,
的單調(diào)遞減區(qū)間是
,若
在區(qū)間
上是減函數(shù),則
,解得
. 綜上所述,實數(shù)
的取值范圍是
或
.
考點:1、導(dǎo)數(shù)及其應(yīng)用;2、導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在
時取得極值,求實數(shù)
的值;
(2)若對任意
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ex+2x2—3x
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2) 當x ≥1時,若關(guān)于x的不等式f(x)≥ax恒成立,求實數(shù)a的取值范圍;
(3)求證函數(shù)f(x)在區(qū)間[0,1)上存在唯一的極值點,并用二分法求函數(shù)取得極值時相應(yīng)x的近似值(誤差不超過0.2);(參考數(shù)據(jù)e≈2.7,≈1.6,e0.3≈1.3)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;
(3)若,使
成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2014·成都模擬)已知函數(shù)f(x)=x2++alnx(x>0).
(1)若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍.
(2)若定義在區(qū)間D上的函數(shù)y=f(x)對于區(qū)間D上的任意兩個值x1,x2總有不等式[f(x1)+f(x2)]≥f
成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函數(shù)”.試證當a≤0時,f(x)為“凹函數(shù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3+ax2+bx.
(1)若函數(shù)y=f(x)在x=2處有極值-6,求y=f(x)的單調(diào)遞減區(qū)間;
(2)若y=f(x)的導(dǎo)數(shù)f′(x)對x∈[-1,1]都有f′(x)≤2,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)當在點
處的切線方程是y=x+ln2時,求a的值.
(2)當的單調(diào)遞增區(qū)間是(1,5)時,求a的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當且
,
時,試用含
的式子表示
,并討論
的單調(diào)區(qū)間;
(2)若有零點,
,且對函數(shù)定義域內(nèi)一切滿足
的實數(shù)
有
.
①求的表達式;
②當時,求函數(shù)
的圖像與函數(shù)
的圖像的交點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com