【題目】已知菱形
所在平面,
,
為線段
的中點(diǎn),
為線段
上一點(diǎn),且
.
(1)求證: 平面
;
(2)若,求二面角
的余弦值.
【答案】(1)見解析;(2).
【解析】分析:(1)取的中點(diǎn)
,連接
,得
,由線面平行的判定定理得
平面
,連接
交
與點(diǎn)
,連接
,得
,進(jìn)而得
平面
,再由面面平行的判定,得平面
平面
,進(jìn)而得到
平面
.
(2)建立空間直角坐標(biāo)系,求解平面
和平面
的法向量,利用向量的夾角公式,即可求解.
詳解:(1)證明:取的中點(diǎn)
,連接
∵為
的中點(diǎn),
∴
∴平面
.……………………2分
連接交
與點(diǎn)
,連接
∵為
的中點(diǎn),
∴
∴平面
……………………4分
∵
∴平面平面
又平面
∴平面
.…………6分
(2)如圖,建立空間直角坐標(biāo)系
則
∴………7分
設(shè)平面的法向量為
則,
即
不放設(shè)得
……………………8分
設(shè)平面的法向量為
則,
即
不放設(shè)得
……………………10分
則二面角的余弦值為
……………………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣lnx+a﹣1,g(x)= +ax﹣xlnx,其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x≥1時,g(x)的最小值大于 ﹣lna,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】幾個孩子在一棵枯樹上玩耍,他們均不慎失足下落.已知
()甲在下落的過程中依次撞擊到樹枝
,
,
;
()乙在下落的過程中依次撞擊到樹枝
,
,
;
()丙在下落的過程中依次撞擊到樹枝
,
,
;
()丁在下落的過程中依次撞擊到樹枝
,
,
;
()戊在下落的過程中依次撞擊到樹枝
,
,
.
倒霉和李華在下落的過程中撞到了從到
的所有樹枝,根據(jù)以上信息,在李華下落的過程中,和這
根樹枝不同的撞擊次序有( )種.
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點(diǎn)C作⊙O的切線,交BD的延長線于點(diǎn)P,交AD的延長線于點(diǎn)E.
(1)求證:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在2018年高校自主招生期間,某校把學(xué)生的平時成績按“百分制”折算,選出前名學(xué)生,并對這
名學(xué)生按成績分組,第一組
,第二組
,第三組
,第四組
,第五組
.如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列,且第四組的人數(shù)為60.
(1)請寫出第一、二、三、五組的人數(shù),并在圖中補(bǔ)全頻率分布直方圖;
(2)若大學(xué)決定在成績高的第3,4,5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)行面試.
①若大學(xué)本次面試中有
,
,
三位考官,規(guī)定獲得至少兩位考官的認(rèn)可即為面試成功,且各考官面試結(jié)果相互獨(dú)立.已知甲同學(xué)已經(jīng)被抽中,并且通過這三位考官面試的概率依次為
,
,
,求甲同學(xué)面試成功的概率;
②若大學(xué)決定在這6名學(xué)生中隨機(jī)抽取3名學(xué)生接受考官
的面試,第3組有
名學(xué)生被考官
面試,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某運(yùn)動員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計該運(yùn)動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,該運(yùn)動員三次投籃恰有兩次命中的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓圓心坐標(biāo)為點(diǎn)
為坐標(biāo)原點(diǎn),
軸、
軸被圓
截得的弦分別為
、
.
(1)證明:的面積為定值;
(2)設(shè)直線與圓
交于
兩點(diǎn),若
,求圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,雙曲線 =1(a>0,b>0)的右支與焦點(diǎn)為F的拋物線x2=2py(p>0)交于A,B兩點(diǎn),若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com