日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四棱錐S-ABCD中,側(cè)棱SA=SB=SC=SD,底面ABCD是菱形,AC與BD交于O點(diǎn),
          (Ⅰ)求證:AC⊥平面SBD;
          (Ⅱ)若E為BC中點(diǎn),點(diǎn)P在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動,并保持PE⊥AC,試指出動點(diǎn)P的軌跡,并證明你的結(jié)論。

          (1)證明:∵底面ABCD是菱形,O為中心,
          ∴AC⊥BD,
          又SA=SC,
          ∴AC⊥SO,而SO∩BD=O,
          ∴AC⊥面SBD;
          (2)解:取棱SC的中點(diǎn)M,CD的中點(diǎn)N,連結(jié)MN,則動點(diǎn)P的軌跡即是線段MN;
          證明:連結(jié)EM、EN,
          ∵E是BC的中點(diǎn),M是SC的中點(diǎn),
          ∴EM∥SB,同理,EN∥BD,
          ∴平面EMN∥平面SBD,
          ∵AC⊥平面SBD,
          ∴AC⊥平面EMN,
          因此,當(dāng)點(diǎn)P在線段MN上運(yùn)動時,總有AC⊥EP;
          P點(diǎn)不在線段MN上時,不可能有AC⊥EP。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在四棱錐S-ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E為BS的中點(diǎn),CE=
          2
          ,AS=
          3
          ,求:
          (Ⅰ)點(diǎn)A到平面BCS的距離;
          (Ⅱ)二面角E-CD-A的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側(cè)棱SD⊥底面ABCD,E、F分別是AB、SC的中點(diǎn)
          (1)求證:EF∥平面SAD
          (2)設(shè)SD=2CD,求二面角A-EF-D的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,SA=AB=AD=
          1
          3
          BC=1
          ,E為SD的中點(diǎn).
          (1)若F為底面BC邊上的一點(diǎn),且BF=
          1
          6
          BC
          ,求證:EF∥平面SAB;
          (2)底面BC邊上是否存在一點(diǎn)G,使得二面角S-DG-A的正切值為
          2
          ?若存在,求出G點(diǎn)位置;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側(cè)棱SD⊥底面ABCD,E,F(xiàn)分別為AB,SC的中點(diǎn).
          (1)證明EF∥平面SAD;
          (2)設(shè)SD=2DC,求二面角A-EF-D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在四棱錐S-ABCD中,平面SAD⊥平面ABCD.底面ABCD為矩形,AD=
          2
          a,AB=
          3
          a
          ,SA=SD=a.
          (Ⅰ)求證:CD⊥SA;
          (Ⅱ)求二面角C-SA-D的大。

          查看答案和解析>>

          同步練習(xí)冊答案