(本小題滿分13分)
已知橢圓的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),
,
是橢圓
上關(guān)于
軸對稱的任意兩個不同的點(diǎn),連結(jié)
交橢圓
于另一點(diǎn)
,證明直線
與
軸相交于定點(diǎn)
;
(Ⅲ)在(Ⅱ)的條件下,過點(diǎn)的直線與橢圓
交于
,
兩點(diǎn),求的取值范圍.
(本小題滿分13分)
解:(Ⅰ)由題意知,
所以.
即.
又因?yàn)?img border=0 width=103 height=48 src="http://thumb.zyjl.cn/pic1/0677/172/122172.gif" >,
所以,
.
故橢圓的方程為
.…………………………………………4分
(Ⅱ)由題意知直線的斜率存在,設(shè)直線
的方程為
.
由 得
. ①
…………………………………………6分
設(shè)點(diǎn),
,則
.
直線的方程為
.
令,得
.
將,
代入,
整理,得. ②
由①得 ,
代入②
整理,得.
所以直線與
軸相交于定點(diǎn)
.……………………………………9分
(Ⅲ)當(dāng)過點(diǎn)直線
的斜率存在時,設(shè)直線
的方程為
,且
,
在橢圓
上.
由 得
.
易知.
所以,
,
.
則.
因?yàn)?img border=0 width=47 height=21 src="http://thumb.zyjl.cn/pic1/0677/213/122213.gif" >,所以.
所以.
當(dāng)過點(diǎn)直線
的斜率不存在時,其方程為
.
解得,
.
此時.
所以的取值范圍是
.……………………………………13分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間
上的圖象.
(3)設(shè)0<x<,且方程
有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)
的單調(diào)性;
(3)若對任意的,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合,
,
.
(1)求(∁
; (2)若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,
為
的中點(diǎn)。
(Ⅰ)求證:∥平面
;
(Ⅱ)求異面直線與
所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且
,函數(shù)
,數(shù)列{
}的首項(xiàng)
.
(1) 求函數(shù)的表達(dá)式;
(2)在中,若
A=2
,
,BC=2,求
的面積
(3) 求數(shù)列的前
項(xiàng)和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com