日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知A、B、C是直線l上的不同的三點(diǎn),O是直線外一點(diǎn),向量、滿足,記y=f(x).
          (1)求函數(shù)y=f(x)的解析式;
          (2)若,,證明:不等式|a-lnx|>ln[f′(x)-3x]成立;
          (3)若關(guān)于x的方程f(x)=2x+b在[0,1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.
          【答案】分析:(1)先根據(jù) 表示出向量 ,再由A,B,C三點(diǎn)共線可得到關(guān)系式 ,整理即可得到答案.
          (2)由,可知a>lnx,由(1)得,所以要證原不等式成立,只須證:,構(gòu)造函數(shù),利用函數(shù)在上均單調(diào)遞增,則求出函數(shù)的最大值即可證得.
          (3)將函數(shù)f(x)的解析式代入f(x)=2x+b中,整理可得 ,然后令 ,根據(jù)導(dǎo)數(shù)判斷其單調(diào)性并求出其單調(diào)區(qū)間,即可求得函數(shù)φ(x)的最小值,再根據(jù)在[0,1]上恰有兩個(gè)不同的實(shí)根結(jié)合函數(shù)的性質(zhì)求出答案.
          解答:解:(1)由題意,
          ∵A、B、C三點(diǎn)共線,


          (2)∵,,則a>lnx
          又由(1)得,,,則
          ∴要證原不等式成立,只須證:(*)
          設(shè)

          ∴h(x)在上均單調(diào)遞增,則h(x)有最大值,
          又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183607703453226/SYS201310241836077034532019_DA/23.png">,所以a>h(x)在恒成立.
          ∴不等式(*)成立,即原不等式成立.
          (3)方程f(x)=2x+b即,令

          當(dāng)時(shí),ϕ′(x)<0,ϕ(x)單調(diào)遞減,
          當(dāng)時(shí),ϕ′(x)>0,ϕ(x)單調(diào)遞增,
          ∴ϕ(x)有極小值為=即在[0,1]上的最小值.
          又ϕ(0)=ln2,,又-ln2=
          ∴l(xiāng)n5->ln2.
          ∴要使原方程在[0,1]上恰有兩個(gè)不同實(shí)根,必須使ln2.
          點(diǎn)評(píng):本題以向量為依托,考查向量在幾何中的應(yīng)用以及利用導(dǎo)函數(shù)研究原函數(shù)的單調(diào)性,解題的關(guān)鍵是利用 A、B、C共線時(shí),+(1-λ) ,建立等式,同時(shí)證明不等式時(shí)利用了分離參數(shù)法,也是我們應(yīng)該掌握的方法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知A、B、C是直線l上的不同三點(diǎn),O是l外一點(diǎn),向量
          OA
          OB
          ,
          OC
          滿足
          OA
          =(
          3
          2
          x2+1)
          OB
          -(lnx-y)
          OC
          ,記y=f(x);
          (1)求函數(shù)y=f(x)的解析式;
          (2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          6、已知a、b、c是直線,α是平面,給出下列命題:
          ①若a∥b,b⊥c,則a⊥c;②若a⊥b,b⊥c,則a∥c;
          ③若a∥α,b?α,則a∥b;④若a⊥α,b?α,則a⊥b;
          ⑤若a與b異面,則至多有一條直線與a、b都垂直.
          其中真命題是
          ①④
          .(把符合條件的序號(hào)都填上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知A、B、C是直線l上不同的三點(diǎn),O是l外一點(diǎn),向量
          OA
          ,
          OB
          ,
          OC
          滿足:
          OA
          -(
          3
          2
          x2+1)•
          OB
          -[ln(2+3x)-y]•
          OC
          =
          0
          .記y=f(x).
          (Ⅰ)求函數(shù)y=f(x)的解析式:
          (Ⅱ)若對(duì)任意x∈[
          1
          6
          ,
          1
          3
          ]
          ,不等式|a-lnx|-ln[f'(x)-3x]>0恒成立,求實(shí)數(shù)a的取值范圍:
          (Ⅲ)若關(guān)于x的方程f(x)=2x+b在(0,1]上恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a、b、c是直線,β是平面,給出下列命題:
          ①若a⊥b,b⊥c,則a∥c;
          ②若a∥b,b⊥c,則a⊥c;
          ③若a∥β,a?α,α∩β=b則a‖b;
          ④若a與b異面,且a∥β,則b與β相交;
          其中真命題的序號(hào)是
          ②③
          ②③
          .(要求寫出所有真命題的序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知A、B、C是直線l上的不同的三點(diǎn),O是外一點(diǎn),則向量
          OA
          、
          OB
          OC
          滿足:
          OA
          OB
          OC
          ,其中λ+μ=1.
          (1)若A、B、C三點(diǎn)共線且有
          OA
          -(3x+1)•
          OB
          -(
          3
          2+3x
          -y)•
          OC
          =
          0
          成立.記y=f(x),求函數(shù)y=f(x)的解析式;
          (2)若對(duì)任意x∈[
          1
          6
          ,
          1
          3
          ]
          ,不等式|a-lnx|-ln[f(x)-3x]>0恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案