日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,點P是橢圓+=1上一動點,點H是點M在x軸上的射影,坐標(biāo)平面xOy內(nèi)動點M滿足:(O為坐標(biāo)原點),設(shè)動點M的軌跡為曲線C.
          (Ⅰ)求曲線C的方程;
          (Ⅱ)過右焦點F的直線l交曲線C于D,E兩點,且2=,點E關(guān)于x軸的對稱點為G,求直線GD的方程.

          【答案】分析:(Ⅰ)設(shè)動點M(x,y),P(x,y),則H(x,0),由動點M滿足:(O為坐標(biāo)原點),得出坐標(biāo)之間的關(guān)系,利用P(x,y)是橢圓+=1上一動點,即可求出曲線C的方程;
          (Ⅱ)直線l:y=k(x-1),設(shè)D(x1,y1),E(x2,y2),由于2=,得坐標(biāo)之間的關(guān)系,聯(lián)立,得(1+k2)x2-2k2x+k2-4=0,利用韋達定理,即可求得k=,,,再分,分別求得求直線GD的方程.
          解答:解:(Ⅰ)設(shè)動點M(x,y),P(x,y),則H(x,0),
          由動點M滿足:(O為坐標(biāo)原點),即

          ∵P(x,y)是橢圓+=1上一動點


          ∴x2+y2=4
          ∴曲線C的方程為x2+y2=4
          (Ⅱ)直線l:y=k(x-1),設(shè)D(x1,y1),E(x2,y2),由于2=,
          則 
          ∴x2=3-2x1
          聯(lián)立,得(1+k2)x2-2k2x+k2-4=0,
          則 x1+x2=,…①x1x2=,…②,
          x2=3-2x1代入①、②得,,…③,…④
          由③、④得k=,…(9分)
          ,
          (i)若時,,
          ,

          ∴直線GD的方程是,即;
          (ii)當(dāng)時,同理可求直線GD的方程是…(12分)
          點評:本題重點考查軌跡方程,考查直線與圓的位置關(guān)系,考查向量知識的運用,解題時聯(lián)立方程,利用韋達定理是關(guān)鍵
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,設(shè)點P是橢圓E:
          x2
          4
          +y2=1
          上的任意一點(異于左,右頂點A,B).
          (1)若橢圓E的右焦點為F,上頂點為C,求以F為圓心且與直線AC相切的圓的半徑;
          (2)設(shè)直線PA,PB分別交直線l:x=
          10
          3
          與點M,N,求證:PN⊥BM.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•泰安一模)如圖,點F是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點,A、B是橢圓的兩個頂點,橢圓的離心率為
          1
          2
          .點C在x軸上,BC⊥BF,且B、C、F三點確定的圓M恰好與直線x+
          3
          y+3=0
          相切.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)過F作一條與兩坐標(biāo)軸都不垂直的直線l交橢圓于P、Q兩點,在x軸上是否存在定點N,使得NF恰好為△PNQ的內(nèi)角平分線,若存在,求出點N的坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•西山區(qū)模擬)如圖,點P是橢圓
          x2
          4
          +
          y2
          3
          =1上一動點,點H是點M在x軸上的射影,坐標(biāo)平面xOy內(nèi)動點M滿足:
          3
          HM
          =2
          HP
          (O為坐標(biāo)原點),設(shè)動點M的軌跡為曲線C.
          (Ⅰ)求曲線C的方程;
          (Ⅱ)過右焦點F的直線l交曲線C于D,E兩點,且2
          DF
          =
          FE
          ,點E關(guān)于x軸的對稱點為G,求直線GD的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,點F是橢圓W:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左焦點,A、B分別是橢圓的右頂點與上頂點,橢圓的離心率為
          1
          2
          ,三角形ABF的面積為
          3
          3
          2
          ,
          (Ⅰ)求橢圓W的方程;
          (Ⅱ)對于x軸上的點P(t,0),橢圓W上存在點Q,使得PQ⊥AQ,求實數(shù)t的取值范圍;
          (Ⅲ)直線l:y=kx+m(k≠0)與橢圓W交于不同的兩點M、N (M、N異于橢圓的左右頂點),若以MN為直徑的圓過橢圓W的右頂點A,求證:直線l過定點,并求出該定點的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案