日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)橢圓(a>b>1)右焦點(diǎn)為F,它與直線l:y=k(x+1)相交于P、Q兩點(diǎn),l與x軸的交點(diǎn)M到橢圓左準(zhǔn)線的距離為d,若橢圓的焦距是b與d+|MF|的等差中項(xiàng).
          (1)求橢圓離心率e;
          (2)設(shè)N與M關(guān)于原點(diǎn)O對(duì)稱,若以N為圓心,b為半徑的圓與l相切,且求橢圓C的方程.
          【答案】分析:(1)根據(jù)題意可得,4c=b+d+|MF|=b+c+,化簡(jiǎn)可得3c2=bc+a3=bc+b2+c2;進(jìn)而可得b=c,則a=c,計(jì)算可得答案.
          (2)由(1)中a、b的關(guān)系,設(shè)橢圓方程為x2+2y2=2b2,聯(lián)立兩者的方程,可得(1+2k2)x2+4k2x+2k2-2b2=0;令其△>0得,
          b2,由根與系數(shù)的關(guān)系,可以表示出,結(jié)合題意,以N為圓心,b為半徑的圓與l相切,可得又=b,化簡(jiǎn)可得b2(k2+1)=4k2,代入中,解可得k的值,進(jìn)而可得a、b的值;進(jìn)而可得答案.
          解答:解:(1)根據(jù)題意,橢圓的焦距是b與d+|MF|的等差中項(xiàng),
          則4c=b+d+|MF|=b+c+>a>1),即3c2=bc+a3=bc+b2+c2;
          化簡(jiǎn)可得,b=c,則a=c,
          則e=;
          (2)設(shè)橢圓方程為x2+2y2=2b2,
          聯(lián)立,得(1+2k2)x2+4k2x+2k2-2b2=0;
          由△>0得,b2,
          且x1+x2=-,x1•x2=,
          ==- ①;
          =b得b2(k2+1)=4k2
          代入①解得:k2=1;
          即b2=2,a2=4;
          橢圓的方程為+=1.
          點(diǎn)評(píng):本題考查直線與橢圓的位置關(guān)系,注意在解題時(shí),聯(lián)立直線與橢圓的方程,一定要令△>0,并計(jì)算k、b的關(guān)系;保證直線與橢圓有兩個(gè)不同的交點(diǎn).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:2013屆河北省高二上學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題

          設(shè)橢圓C:(a〉b>0)的左焦點(diǎn)為,橢圓過(guò)點(diǎn)P(

          (1)求橢圓C的方程;

          (2)已知點(diǎn)D(l,0),直線l:與橢圓C交于A、B兩點(diǎn),以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:吉林一中2009-2010學(xué)年上學(xué)期期末高二(數(shù)學(xué))試題 題型:解答題

          在直角坐標(biāo)系xOy中,設(shè)橢圓C:(ab>0)的左、右兩個(gè)焦點(diǎn)分別為F1、F2.過(guò)右焦點(diǎn)F2且與x軸垂直的直線l與橢圓C相交,其中一個(gè)交點(diǎn)為M(,1).

          (1)求橢圓C的方程;

          (2)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),直線BF2交橢圓C于另一點(diǎn)N,求△F1BN的面積.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶八中高三(下)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          設(shè)橢圓(a>b>1)右焦點(diǎn)為F,它與直線l:y=k(x+1)相交于P、Q兩點(diǎn),l與x軸的交點(diǎn)M到橢圓左準(zhǔn)線的距離為d,若橢圓的焦距是b與d+|MF|的等差中項(xiàng).
          (1)求橢圓離心率e;
          (2)設(shè)N與M關(guān)于原點(diǎn)O對(duì)稱,若以N為圓心,b為半徑的圓與l相切,且求橢圓C的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶市渝中區(qū)巴蜀中學(xué)高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          設(shè)橢圓(a>b>1)右焦點(diǎn)為F,它與直線l:y=k(x+1)相交于P、Q兩點(diǎn),l與x軸的交點(diǎn)M到橢圓左準(zhǔn)線的距離為d,若橢圓的焦距是b與d+|MF|的等差中項(xiàng).
          (1)求橢圓離心率e;
          (2)設(shè)N與M關(guān)于原點(diǎn)O對(duì)稱,若以N為圓心,b為半徑的圓與l相切,且求橢圓C的方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案