日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在三棱柱ABC-A1B1C1中,已知底面ABC是邊長(zhǎng)為a的正三角形,側(cè)棱AA1=數(shù)學(xué)公式a,點(diǎn)D,E,F(xiàn),O分別為邊AB,A1C,AA1,BC的中點(diǎn),A1O⊥底面ABC.
          (Ⅰ)求證:線段DE∥平面BB1C1C;
          (Ⅱ)求證:FO⊥平面BB1C1C.

          證明:(Ⅰ)∵E為A1C的中點(diǎn),
          ∴E也為AC1的中點(diǎn),
          又∵D為AB的中點(diǎn),…(2分)
          ∴DE∥BC1,…(4分)
          又∵DE?平面BB1C1C,BC1?平面BB1C1C
          ∴DE∥平面BB1C1C. …(6分)
          (Ⅱ)因?yàn)椤鰽BC是邊長(zhǎng)這a的正三角形,所以AO=a.
          又A1O⊥底面ABC,AO?底面ABC,
          所以A1O⊥AO,…(8分)
          又AA1=a,所以A1O=AO=a.
          又F為AA1的中點(diǎn),所以O(shè)F⊥AA1
          又∵BB1∥AA1,
          ∴OF⊥BB1. …(10分)
          又BC⊥AO,BC⊥A1O,AO∩A1O=0,AO,A1O?平面AOA1,
          ∴BC⊥平面AOA1,
          又∵FO?平面AOA1,
          ∴BC⊥FO,…(12分)
          又∵BC∩BB1=B,BC,BB1?平面BB1C1C
          所以FO⊥平面BB1C1C. …(14分)
          分析:(I)根據(jù)平行四邊形對(duì)角線互相平分可得E也為AC1的中點(diǎn),由中位線定理可得DE∥BC1,再由線面平行的判定定理可得線段DE∥平面BB1C1C;
          (Ⅱ)由A1O⊥底面ABC可得A1O⊥AO,求出A1O,AO長(zhǎng),可由等腰三角形三線合一得到OF⊥AA1,即OF⊥BB1.由線面垂直的判定定理可得BC⊥平面AOA1,即BC⊥FO,再由線面垂直的判定定理可得FO⊥平面BB1C1C.
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線與平面垂直的判定,直線與平面平行的判定,熟練掌握空間直線與平面垂直和平行的判定定理是解答的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知三棱柱ABC-A1B1C1的三視圖如圖所示,其中主視圖AA1B1B和左視圖B1BCC1均為矩形,在俯視圖△A1B1C1中,A1C1=3,A1B1=5,cos∠A1=
          35

          (1)在三棱柱ABC-A1B1C1中,求證:BC⊥AC1;
          (2)在三棱柱ABC-A1B1C1中,若D是底邊AB的中點(diǎn),求證:AC1∥平面CDB1
          (3)若三棱柱的高為5,求三視圖中左視圖的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖:在正三棱柱ABC-A1 B1 C1中,AB=
          AA13
          =a,E,F(xiàn)分別是BB1,CC1上的點(diǎn)且BE=a,CF=2a.
          (Ⅰ)求證:面AEF⊥面ACF;
          (Ⅱ)求三棱錐A1-AEF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
          5
          ,BC=4,在A1在底面ABC的投影是線段BC的中點(diǎn)O.
          (1)求點(diǎn)C到平面A1ABB1的距離;
          (2)求二面角A-BC1-B1的余弦值;
          (3)若M,N分別為直線AA1,B1C上動(dòng)點(diǎn),求MN的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•江西)在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
          5
          ,BC=4,在A1在底面ABC的投影是線段BC的中點(diǎn)O.
          (1)證明在側(cè)棱AA1上存在一點(diǎn)E,使得OE⊥平面BB1C1C,并求出AE的長(zhǎng);
          (2)求平面A1B1C與平面BB1C1C夾角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•北京)如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
          (Ⅰ)求證:AA1⊥平面ABC;
          (Ⅱ)求證二面角A1-BC1-B1的余弦值;
          (Ⅲ)證明:在線段BC1上存在點(diǎn)D,使得AD⊥A1B,并求
          BDBC1
          的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案