日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)橢圓C:(a>0)的兩個(gè)焦點(diǎn)是F1(-c,0)和F2(c,0)(c>0),且橢圓C與圓x2+y2=c2有公共點(diǎn).
          (Ⅰ)求a的取值范圍;
          (Ⅱ)若橢圓上的點(diǎn)到焦點(diǎn)的最短距離為,求橢圓的方程;
          (Ⅲ)對(duì)(2)中的橢圓C,直線l:y=kx+m(k≠0)與C交于不同的兩點(diǎn)M、N,若線段MN的垂直平分線恒過點(diǎn)A(0,-1),求實(shí)數(shù)m的取值范圍.
          【答案】分析:(Ⅰ)由已知,a>1,方程組有實(shí)數(shù)解,從而,由此能得到a的取值范圍.
          (Ⅱ)設(shè)橢圓上的點(diǎn)P(x,y)到一個(gè)焦點(diǎn)F2(c,0)的距離為d,則
          =(-a≤x≤a).由,當(dāng)x=a時(shí),dmin=a-c,于是,,由此能導(dǎo)出所求橢圓方程.
          (Ⅲ)由,得(3k2+1)x2+6mkx+3(m2-1)=0.由直線l與橢圓交于不同兩點(diǎn),知△>0,由此入手能求出實(shí)數(shù)m的取值范圍.
          解答:解:(Ⅰ)由已知,a>1,
          ∴方程組有實(shí)數(shù)解,從而,
          故c2≥1,所以a2≥2,即a的取值范圍是
          (Ⅱ)設(shè)橢圓上的點(diǎn)P(x,y)到一個(gè)焦點(diǎn)F2(c,0)的距離為d,

          =(-a≤x≤a).
          ,
          ∴當(dāng)x=a時(shí),dmin=a-c,
          (可以直接用結(jié)論)
          于是,,
          解得
          ∴所求橢圓方程為
          (Ⅲ)由
          得(3k2+1)x2+6mkx+3(m2-1)=0(*)
          ∵直線l與橢圓交于不同兩點(diǎn),
          ∴△>0,即m2<3k2+1.①
          設(shè)M(x1,y1)、N(x2,y2),則x1、x2是方程(*)的兩個(gè)實(shí)數(shù)解,

          ∴線段MN的中點(diǎn)為,
          又∵線段MN的垂直平分線恒過點(diǎn)A(0,-1),
          ∴AQ⊥MN,
          ,即2m=3k2+1(k≠0)②
          由①,②得m2<2m,0<m<2,又由②得,
          ∴實(shí)數(shù)m的取值范圍是
          點(diǎn)評(píng):本題考查圓錐曲線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意公式的靈活運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          設(shè)橢圓C:數(shù)學(xué)公式(a>0)的兩個(gè)焦點(diǎn)是F1(-c,0)和F2(c,0)(c>0),且橢圓C與圓x2+y2=c2有公共點(diǎn).
          (Ⅰ)求a的取值范圍;
          (Ⅱ)若橢圓上的點(diǎn)到焦點(diǎn)的最短距離為數(shù)學(xué)公式,求橢圓的方程;
          (Ⅲ)對(duì)(2)中的橢圓C,直線l:y=kx+m(k≠0)與C交于不同的兩點(diǎn)M、N,若線段MN的垂直平分線恒過點(diǎn)A(0,-1),求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省荊門市高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          設(shè)橢圓C:(a>0)的兩個(gè)焦點(diǎn)是F1(-c,0)和F2(c,0)(c>0),且橢圓C與圓x2+y2=c2有公共點(diǎn).
          (Ⅰ)求a的取值范圍;
          (Ⅱ)若橢圓上的點(diǎn)到焦點(diǎn)的最短距離為,求橢圓的方程;
          (Ⅲ)對(duì)(2)中的橢圓C,直線l:y=kx+m(k≠0)與C交于不同的兩點(diǎn)M、N,若線段MN的垂直平分線恒過點(diǎn)A(0,-1),求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年天津市寶坻區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

          設(shè)橢圓C:(a>0)的左右焦點(diǎn)分別為F1、F2,A是橢圓C上的一點(diǎn),,坐標(biāo)原點(diǎn)O到直線AF1的距離為|OF1|.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)Q是橢圓C上的一點(diǎn),過點(diǎn)Q的直線l交x軸于點(diǎn)F(-1,0),交y軸于點(diǎn)M,若||=2||,求直線l的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年河南省焦作市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

          設(shè)橢圓C:(a>0)的兩個(gè)焦點(diǎn)是F1(-c,0)和F2(c,0)(c>0),且橢圓C與圓x2+y2=c2有公共點(diǎn).
          (Ⅰ)求a的取值范圍;
          (Ⅱ)若橢圓上的點(diǎn)到焦點(diǎn)的最短距離為,求橢圓的方程;
          (Ⅲ)對(duì)(2)中的橢圓C,直線l:y=kx+m(k≠0)與C交于不同的兩點(diǎn)M、N,若線段MN的垂直平分線恒過點(diǎn)A(0,-1),求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案