日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對(duì)于數(shù)列{an},定義其平均數(shù)是Vn=
          a1+a2+…an
          n
          ,n∈N*
          (Ⅰ)若數(shù)列{an}的平均數(shù)Vn=2n+1,求an;
          (Ⅱ)若數(shù)列{an}是首項(xiàng)為1,公比為2的等比數(shù)列,其平均數(shù)為Vn,Vn≥t-
          1
          n
          對(duì)一切n∈N*恒成立,求實(shí)數(shù)t的取值范圍.
          分析:(Ⅰ)因?yàn)?span id="sebvxuo" class="MathJye">Vn=
          a1+a2+…an
          n
          ,所以
          a1+a2+…an
          n
          =2n+1
          .變形得 a1+a2+…+an=2n2+n,由此能求出an
          (Ⅱ)因?yàn)?span id="ezwrqtp" class="MathJye">an=2n-1,其平均數(shù)Vn=
          2n-1
          n
          .由Vn≥t-
          1
          n
          對(duì)一切n∈N*恒成立,即λ≤
          2n
          n
          恒成立.令f(n)=
          2n
          n
          ,則
          f(n+1)
          f(n)
          =
          2n
          n+1
          =2-
          2
          n+1
          ,由此能求出實(shí)數(shù)t的取值范圍.
          解答:解:(Ⅰ)因?yàn)?span id="iexl4eu" class="MathJye">Vn=
          a1+a2+…an
          n

          所以
          a1+a2+…an
          n
          =2n+1

          變形得 a1+a2+…+an=2n2+n,①(2分)
          當(dāng)n≥2時(shí)有  a1+a2+…+an-1=2(n-1)2+(n-1)
          ①-②得an=4n-1(n≥2).(5分)
          又當(dāng)n=1時(shí),V1=a1=2×1+1=3,
          適合an=4n-1.(6分)
          故an=4n-1(n∈N*).(7分)
          (Ⅱ)因?yàn)?span id="9rw9tqu" class="MathJye">an=2n-1
          其平均數(shù)Vn=
          2n-1
          n
          .(9分)
          由已知Vn≥t-
          1
          n
          對(duì)一切n∈N*恒成立,即λ≤
          2n
          n
          恒成立.
          f(n)=
          2n
          n
          ,
          f(n+1)
          f(n)
          =
          2n
          n+1
          =2-
          2
          n+1
          ,
          當(dāng)n=1時(shí),
          f(n+1)
          f(n)
          =1
          ,
          當(dāng)n>1,n∈N*時(shí),
          f(n+1)
          f(n)
          >1

          所以f(n)≥f(1)=2,
          因此實(shí)數(shù)t的取值范圍t≤2.(14分)
          點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和公式的應(yīng)用.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x2+(a-3)x+a2-3a(a為常數(shù)).
          (1)如果對(duì)任意x∈[1,2],f(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
          (2)設(shè)實(shí)數(shù)p,q,r滿足:p,q,r中的某一個(gè)數(shù)恰好等于a,且另兩個(gè)恰為方程f(x)=0的兩實(shí)根,判斷①p+q+r,②p2+q2+r2,③p3+q3+r3是否為定值?若是定值請(qǐng)求出:若不是定值,請(qǐng)把不是定值的表示為函數(shù)g(a),并求g(a)的最小值;
          (3)對(duì)于(2)中的g(a),設(shè)H(a)=-
          16
          [g(a)-27]
          ,數(shù)列{an}滿足an+1=H(an)(n∈N*),且a1∈(0,1),試判斷an+1與an的大小,并證明之.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2,y2)
          是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
          1
          2
          的點(diǎn)P滿足2
          OP
          =
          OM
          +
          ON
          (O為坐標(biāo)原點(diǎn)).
          (1)求證:y1+y2為定值;
          (2)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )
          ,其中n∈N*,n≥2令an=
          1
          6
          ,n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          ,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.
          (3)對(duì)于給定的實(shí)數(shù)a(a>1)是否存在這樣的數(shù)列{an},使得f(an)=log3(
          3
          an+1)
          ,且a1=
          1
          a-1
          ?若存在,求出a滿足的條件;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:湖北模擬 題型:解答題

          已知函數(shù)f(x)=x2+(a-3)x+a2-3a(a為常數(shù)).
          (1)如果對(duì)任意x∈[1,2],f(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
          (2)設(shè)實(shí)數(shù)p,q,r滿足:p,q,r中的某一個(gè)數(shù)恰好等于a,且另兩個(gè)恰為方程f(x)=0的兩實(shí)根,判斷①p+q+r,②p2+q2+r2,③p3+q3+r3是否為定值?若是定值請(qǐng)求出:若不是定值,請(qǐng)把不是定值的表示為函數(shù)g(a),并求g(a)的最小值;
          (3)對(duì)于(2)中的g(a),設(shè)H(a)=-
          1
          6
          [g(a)-27]
          ,數(shù)列{an}滿足an+1=H(an)(n∈N*),且a1∈(0,1),試判斷an+1與an的大小,并證明之.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年5月湖北省襄樊五中高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

          已知函數(shù)f(x)=x2+(a-3)x+a2-3a(a為常數(shù)).
          (1)如果對(duì)任意x∈[1,2],f(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
          (2)設(shè)實(shí)數(shù)p,q,r滿足:p,q,r中的某一個(gè)數(shù)恰好等于a,且另兩個(gè)恰為方程f(x)=0的兩實(shí)根,判斷①p+q+r,②p2+q2+r2,③p3+q3+r3是否為定值?若是定值請(qǐng)求出:若不是定值,請(qǐng)把不是定值的表示為函數(shù)g(a),并求g(a)的最小值;
          (3)對(duì)于(2)中的g(a),設(shè),數(shù)列{an}滿足an+1=H(an)(n∈N*),且a1∈(0,1),試判斷an+1與an的大小,并證明之.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省揚(yáng)州市寶應(yīng)縣曹甸高級(jí)中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

          已知函數(shù)f(x)=x2+(a-3)x+a2-3a(a為常數(shù)).
          (1)如果對(duì)任意x∈[1,2],f(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
          (2)設(shè)實(shí)數(shù)p,q,r滿足:p,q,r中的某一個(gè)數(shù)恰好等于a,且另兩個(gè)恰為方程f(x)=0的兩實(shí)根,判斷①p+q+r,②p2+q2+r2,③p3+q3+r3是否為定值?若是定值請(qǐng)求出:若不是定值,請(qǐng)把不是定值的表示為函數(shù)g(a),并求g(a)的最小值;
          (3)對(duì)于(2)中的g(a),設(shè),數(shù)列{an}滿足an+1=H(an)(n∈N*),且a1∈(0,1),試判斷an+1與an的大小,并證明之.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案