【題目】設函數f(x)=ax﹣(k﹣1)a﹣x(a>0且a≠1)是定義域為R的奇函數.
(1)求k值;
(2)若f(1)= ,且g(x)=a2x+a﹣2x﹣2mf(x)在[1,+∞)上的最小值為﹣2,求m的值.
【答案】
(1)解:∵f(x)是定義域為R的奇函數,
∴f(0)=0,
∴1﹣(k﹣1)=0,∴k=2,
經檢驗知:k=2滿足題意
(2)解:∵f(1)= ,a﹣
=
,即2a2﹣3a﹣2=0,
解得a=2或﹣ ,其中a=﹣
舍去.
∴g(x)=22x+2﹣2x﹣2m(2x﹣2﹣x)=(2x﹣2﹣x)2﹣2m(2x﹣2﹣x)+2.
令t=f(x)=2x﹣2﹣x,
由(1)可知f(x)=2x﹣2﹣x為增函數,
∵x≥1,∴t≥f(1)= ,
令h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2 (t≥ ),
若m≥ ,當t=m時,h(t)min=2﹣m2=﹣2,∴m=2. …(10分)
若m< ,當t=
時,h(t)min=
﹣﹣3m=﹣2,解得m=
>
,舍去.
綜上可知:m=2
【解析】(1)利用奇函數的性質f(0)=0即可得出;(2)利用f(1)= ,可得a.可得g(x)=(2x﹣2﹣x)2﹣2m(2x﹣2﹣x)+2.再利用指數函數與二次函數的單調性即可得出.
【考點精析】認真審題,首先需要了解函數的最值及其幾何意義(利用二次函數的性質(配方法)求函數的最大(小)值;利用圖象求函數的最大(。┲担焕煤瘮祮握{性的判斷函數的最大(。┲),還要掌握函數奇偶性的性質(在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】(12分)為了監(jiān)控某種零件的一條生產線的生產過程,檢驗員每天從該生產線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據長期生產經驗,可以認為這條生產線正常狀態(tài)下生產的零件的尺寸服從正態(tài)分布N(μ,σ2).
(1)假設生產狀態(tài)正常,記X表示一天內抽取的16個零件中其尺寸在(μ–3σ,μ+3σ)之外的零件數,求P(X≥1)及X的數學期望;
(2)一天內抽檢零件中,如果出現了尺寸在(μ–3σ,μ+3σ)之外的零件,就認為這條生產線在這一天的生產過程可能出現了異常情況,需對當天的生產過程進行檢查.
(ⅰ)試說明上述監(jiān)控生產過程方法的合理性;
(ⅱ)下面是檢驗員在一天內抽取的16個零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經計算得,
,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
用樣本平均數作為μ的估計值
,用樣本標準差s作為σ的估計值
,利用估計值判斷是否需對當天的生產過程進行檢查?剔除
之外的數據,用剩下的數據估計μ和σ(精確到0.01).
附:若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ–3σ<Z<μ+3σ)=0.997 4,0.997 416≈0.959 2,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】盒中共有形狀大小完全相同的5個球,其中有2個紅球和3個白球.若從中隨機取2個球,則概率為 的事件是( )
A.都不是紅球
B.恰有1個紅球
C.至少有1個紅球
D.至多有1個紅球
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣2ax+5(a>1).
(1)若f(x)的定義域和值域均是[1,a],求實數a的值;
(2)若對任意的x1 , x2∈[1,a+1],總有|f(x1)﹣f(x2)|≤4,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設x,y滿足不等式組 ,若z=ax+y的最大值為2a+4,最小值為a+1,則實數a的取值范圍為( )
A.[﹣1,2]
B.[﹣2,1]
C.[﹣3,﹣2]
D.[﹣3,1]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的各項都為正數,其前n項和為Sn , 已知4Sn=an2+2an .
(1)求a1級數列{an}的通項公式;
(2)設數列{bn}前n項和為Tn , 且bn= ,若λTn<n+(﹣1)n36對n∈N*恒成立,求實數λ的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com