【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當x≥0時f(x)= .
(1)求f(x)的解析式;
(2)判斷f(x)的單調性(不必證明);
(3)若對任意的t∈R,不等式f(k﹣3t2)+f(t2+2t)≤0恒成立,求k的取值范圍.
【答案】
(1)
解:∵當x≥0時有 ,
∴當x≤0時,﹣x≥0,
∴ (x≤0),
∴
(2)
解:∵當x≥0時有 ,∴f(x)在[0,+∞)上是增函數(shù)
又∵f(x)是奇函數(shù),∴f(x)是在(﹣∞,+∞)上是增函數(shù)
(注:只判斷f(x)是在(﹣∞,+∞)上是增函數(shù))
(3)
解:f(k﹣3t2)+f(t2+2t)≤0則f(t2+2t)≤﹣f(k﹣3t2)=f(3t2﹣k)
因f(x)為增函數(shù),由上式推得,t2+2t≤3t2﹣k,∴2t2﹣2t﹣k≥0
即對一切t∈R恒有2t2﹣2t﹣k≥0
從而判別式△=4+8k≤0,∴
【解析】(1)依題意,當x≤0時,﹣x≥0,利用 ,可求得當x≤0時的函數(shù)表達式,從而可得f(x)的解析式;(2)當x≥0時,將函數(shù)
分離出常數(shù)2,利用反比例函數(shù)的單調性可判斷出f(x)在[0,+∞)上是增函數(shù),再利用奇函數(shù)的單調性質,可判斷f(x)的單調性;(3)利用(2)可知,f(x)在(﹣∞,+∞)上是增函數(shù),再利用奇函數(shù)的性質,將不等式f(k﹣3t2)+f(t2+2t)≤0轉化為t2+2t≤3t2﹣k恒成立,利用判別式△=4+8k≤0即可求得k的取值范圍.
【考點精析】解答此題的關鍵在于理解函數(shù)的單調性的相關知識,掌握注意:函數(shù)的單調性是函數(shù)的局部性質;函數(shù)的單調性還有單調不增,和單調不減兩種.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線
:
,曲線
:
(
為參數(shù)),以坐標原點
為極點,
軸正半軸為極軸,建立極坐標系.
(Ⅰ)求曲線,
的極坐標方程;
(Ⅱ)曲線:
(
為參數(shù),
,
)分別交
,
于
,
兩點,當
取何值時,
取得最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知: 、
、
是同一平面上的三個向量,其中
=(1,2).
(1)若| |=2
,且
∥
,求
的坐標.
(2)若| |=
,且
+2
與2
﹣
垂直,求
與
的夾角θ
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a1=3,an=2an﹣1+(t+1)2n+3m+t(t,m∈R,n≥2,n∈N*)
(1)t=0,m=0時,求證: 是等差數(shù)列;
(2)t=﹣1,m= 是等比數(shù)列;
(3)t=0,m=1時,求數(shù)列{an}的通項公式和前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某社區(qū)工會對當?shù)仄髽I(yè)工人月收入情況進行一次抽樣調查后畫出的頻率分布直方圖,其中第二組月收入在[1.5,2)千元的頻數(shù)為300,則此次抽樣的樣本容量為( )
A.1000
B.2000
C.3000
D.4000
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一次測驗共有4個選擇題和2個填空題,每答對一個選擇題得20分,每答對一個填空題得10分,答錯或不答得0分,若某同學答對每個選擇題的概率均為 ,答對每個填空題的概率均為
,且每個題答對與否互不影響.
(1)求該同學得80分的概率;
(2)若該同學已經答對了3個選擇題和1個填空題,記他這次測驗的得分為ξ,求ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知空間四邊形ABCD的兩條對角線的長AC=6,BD=8,AC與BD所成的角為30o , E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,求四邊形EFGH的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,菱與四邊形BDEF相交于BD,
平面ABCD,DE//BF,BF=2DE,AF⊥FC,M為CF的中點,
.
(I)求證:GM//平面CDE;
(II)求證:平面ACE⊥平面ACF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com