日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),i是過點(diǎn)A與x軸垂直的直線,D是直線i與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足|DM|=m|DA|(m>0,且m≠1),當(dāng)點(diǎn)A在圓上運(yùn)動時(shí),記點(diǎn)M的軌跡為曲線C。
          (1)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點(diǎn)坐標(biāo);
          (2)過原點(diǎn)且斜率為k的直線交曲線C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由。

          解:(1)如圖1,設(shè)M(x,y),A(x0,y0
          ∵丨DM丨=m丨DA丨,
          ∴x=x0,|y|=m|y0|
          ∴x0=x,|y0|=|y|①
          ∵點(diǎn)A在圓上運(yùn)動,

          ①代入②即得所求曲線C的方程為
          ∵m∈(0,1)∪(1,+∞),
          ∴0<m<1時(shí),曲線C是焦點(diǎn)在x軸上的橢圓,
          兩焦點(diǎn)坐標(biāo)分別為(),
          m>1時(shí),曲線C是焦點(diǎn)在y軸上的橢圓,
          兩焦點(diǎn)坐標(biāo)分別為(),
          (2)如圖2、3,∵x1∈(0,1),
          設(shè)P(x1,y1),H(x2,y2),
          則Q(x2,y2),N(0,y1),
          ∵P,H兩點(diǎn)在橢圓C上,

          ①-②可得
          ∵Q,N,H三點(diǎn)共線,
          ∴kQN=kQH

          ∴kPQ·kPH=
          ∵PQ⊥PH,
          ∴kPQ·kPH=-1

          ∵m>0,

          故存在,使得在其對應(yīng)的橢圓上,對任意k>0,都有PQ⊥PH。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•湖北)設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),i是過點(diǎn)A與x軸垂直的直線,D是直線i與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當(dāng)點(diǎn)A在圓上運(yùn)動時(shí),記點(diǎn)M的軌跡為曲線C.
          (I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點(diǎn)坐標(biāo);
          (Ⅱ)過原點(diǎn)且斜率為k的直線交曲線C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)A是單位圓x2+y2=1上任意一點(diǎn),l是過點(diǎn)A與x軸垂直的直線,D是直線l與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足當(dāng)點(diǎn)A在圓上運(yùn)動時(shí),記點(diǎn)M的軌跡為曲線C。

          (1)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求其焦點(diǎn)坐標(biāo)。

          (2)過原點(diǎn)斜率為K的直線交曲線C于P,Q兩點(diǎn),其中P在第一象限,且它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對任意的K>0,都有PQ⊥PH?若存在,請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:高考真題 題型:解答題

          設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),i是過點(diǎn)A與x軸垂直的直線,D是直線i與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足|DM|=m|DA|(m>0,且m≠1)。當(dāng)點(diǎn)A在圓上運(yùn)動時(shí),記點(diǎn)M的軌跡為曲線C。
          (1)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點(diǎn)坐標(biāo);
          (2)過原點(diǎn)且斜率為k的直線交曲線C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省佛山市順德區(qū)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),i是過點(diǎn)A與x軸垂直的直線,D是直線i與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當(dāng)點(diǎn)A在圓上運(yùn)動時(shí),記點(diǎn)M的軌跡為曲線C.
          (I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點(diǎn)坐標(biāo);
          (Ⅱ)過原點(diǎn)且斜率為k的直線交曲線C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年湖北省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),i是過點(diǎn)A與x軸垂直的直線,D是直線i與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當(dāng)點(diǎn)A在圓上運(yùn)動時(shí),記點(diǎn)M的軌跡為曲線C.
          (I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點(diǎn)坐標(biāo);
          (Ⅱ)過原點(diǎn)且斜率為k的直線交曲線C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案