日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知{an}是等差數(shù)列,其前n項(xiàng)和為5n,{bn}是等比數(shù)列,且a1=b1=2,a2+b4=21,b4-S3=1.
          (Ⅰ)求數(shù)列{an}與{bn}的通項(xiàng)公式;
          (Ⅱ)記cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn
          分析:(Ⅰ)設(shè)出公比和公差,根據(jù)條件,組成方程組,求出公比和公差,即可求出通項(xiàng);
          (Ⅱ)借助于錯(cuò)位相減法求出Tn的表達(dá)式即可.
          解答:解:(Ⅰ)設(shè)等差數(shù)列的公差為d,等比數(shù)列的首項(xiàng)為q,
          ∵a1=b1=2,a2+b4=21,b4-S3=1
          2+d+2q3=21
          2q3-(3×2+3d)=1

          ∴d=3,q=2
          ∴an=3n-1,bn=2n;
          (Ⅱ)cn=an•bn=(3n-1)•2n
          ∴Tn=2×21+5×22+…+(3n-1)•2n,
          ∴2Tn=2×22+5×23+…+(3n-1)•2n+1
          ∴-Tn=2×21+3×22+…+3•2n-(3n-1)•2n+1=(4-3n)•2n+1-8
          ∴Tn=(3n-4)•2n+1+8.
          點(diǎn)評(píng):本題考查等差數(shù)列和等比數(shù)列的綜合問(wèn)題,考查數(shù)列的求和,考查學(xué)生的計(jì)算能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知
          i
          =(1,0),
          jn
          =(cos2
          2
          ,sin
          2
          ),
          Pn
          =(an,sin
          2
          )(n∈N+),數(shù)列{an}
          滿足:a1=1,a2=1,an+2=(i+
          jn
          )•
          Pn

          (I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
          (II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)Sn是等差數(shù){an}的前n項(xiàng)和,已知S6=36,Sn=324,若Sn-6=144(n>6),則n等于

          A.15                 B.16             C.17                D.18

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知
          i
          =(1,0),
          jn
          =(cos2
          2
          ,sin
          2
          ),
          Pn
          =(an,sin
          2
          )(n∈N+),數(shù)列{an}
          滿足:a1=1,a2=1,an+2=(i+
          jn
          )•
          Pn

          (I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
          (II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年重慶市南開(kāi)中學(xué)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知滿足:
          (I)求證:數(shù)列{a2k-1}是等差數(shù);數(shù)列{a2k}是等比數(shù)列;(其中k∈N*);
          (II)記an=f(n),對(duì)任意的正整數(shù)n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案