日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)g(x)是定義在R上以1為周期的函數(shù),若函數(shù)f(x)=x+g(x)在區(qū)間[3,4]時(shí)的值域?yàn)閇-2,5],則f(x)在區(qū)間[2,5]上的值域?yàn)開(kāi)_______.
          [-3,6]
          當(dāng)x∈[2,3]時(shí),x+1∈[3,4],所以f(x+1)=x+1+g(x+1)=x+1+g(x)∈[-2,5],所以f(x)=x+g(x)∈[-3,4];當(dāng)x∈[4,5]時(shí),x-1∈[3,4],所以f(x-1)=x-1+g(x-1)=x-1+g(x)∈[-2,5],所以f(x)=x+g(x)∈[-1,6],所以f(x)在區(qū)間[2,5]上的值域?yàn)閇-3,6].
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          設(shè)函數(shù)f(x)=a為常數(shù)且a∈(0,1).
          (1)當(dāng)a=時(shí),求f;
          (2)若x0滿(mǎn)足f[f(x0)]=x0,但f(x0)≠x0,則稱(chēng)x0為f(x)的二階周期點(diǎn).證明函數(shù)f(x)有且僅有兩個(gè)二階周期點(diǎn),并求二階周期點(diǎn)x1,x2;
          (3)對(duì)于(2)中的x1,x2,設(shè)A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),記△ABC的面積為S(a),求S(a)在區(qū)間[,]上的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù).
          (Ⅰ)當(dāng),函數(shù)有且僅有一個(gè)零點(diǎn),且時(shí),求的值;
          (Ⅱ)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          給定函數(shù):①y=,②y=(x+1),③y=|x-1|,④y=2x+1,其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)是____________.(填序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時(shí)是單調(diào)函數(shù),則滿(mǎn)足f(x)=f()的所有x之和為(  )
          A.-3B.3C.-8D.8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          設(shè)f(x)=x3+log2,則不等式f(m)+f(m2-2)≥0(m∈R)成立的充要條件是________.(注:填寫(xiě)m的取值范圍)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知函數(shù)f(x)=e|xa|(a為常數(shù)).若f(x)在區(qū)間[1,+∞)上是增函數(shù),則a的取值范圍是________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知函數(shù)f(x)=ex-ex(x∈R且e為自然對(duì)數(shù)的底數(shù)).
          (1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
          (2)是否存在實(shí)數(shù)t,使不等式f(xt)+f(x2t2)≥0對(duì)一切x都成立?若存在,求出t;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          若存在,使不等式成立,則實(shí)數(shù)的最小值為        .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案