日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側(cè)棱SD⊥底面ABCD,SD=AD,DF⊥SB垂足為F,E是SD的中點(diǎn).
          (Ⅰ)證明:SA∥平面BDE;
          (Ⅱ)證明:平面SBD⊥平面DEF.
          分析:(Ⅰ)利用線面平行的判定證明SA∥平面BDE,連接AC,AC∩BD=O,利用三角形的中位線,證明EO∥SA即可;
          (Ⅱ)先證明DE⊥面SBC,可得DE⊥SB,利用DF⊥SB,DE∩DF=D,可證SB⊥平面DEF,利用面面垂直的判定可得結(jié)論.
          解答:證明:(Ⅰ)連接AC,AC∩BD=O,連接OE,則O為AC的中點(diǎn)

          ∵E是SD的中點(diǎn),∴EO∥SA
          ∵SA?平面BDE,EO?平面BDE
          ∴SA∥平面BDE;
          (Ⅱ)∵E是SD的中點(diǎn),底面ABCD為正方形,側(cè)棱SD⊥底面ABCD,SD=AD,
          ∴DE⊥SC,BC⊥DE
          ∵SC∩BC=C
          ∴DE⊥面SBC
          ∵SB?面SBC
          ∴DE⊥SB
          ∵DF⊥SB,DE∩DF=D
          ∴SB⊥平面DEF
          ∵SB?平面SBD
          ∴平面SBD⊥平面DEF.
          點(diǎn)評(píng):本題考查線面平行,考查面面垂直,解題的關(guān)鍵是掌握線面平行、面面垂直的判定方法,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在四棱錐S-ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E為BS的中點(diǎn),CE=
          2
          ,AS=
          3
          ,求:
          (Ⅰ)點(diǎn)A到平面BCS的距離;
          (Ⅱ)二面角E-CD-A的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側(cè)棱SD⊥底面ABCD,E、F分別是AB、SC的中點(diǎn)
          (1)求證:EF∥平面SAD
          (2)設(shè)SD=2CD,求二面角A-EF-D的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,SA=AB=AD=
          1
          3
          BC=1
          ,E為SD的中點(diǎn).
          (1)若F為底面BC邊上的一點(diǎn),且BF=
          1
          6
          BC
          ,求證:EF∥平面SAB;
          (2)底面BC邊上是否存在一點(diǎn)G,使得二面角S-DG-A的正切值為
          2
          ?若存在,求出G點(diǎn)位置;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在四棱錐S-ABCD中,底面ABCD為正方形,側(cè)棱SD⊥底面ABCD,E,F(xiàn)分別為AB,SC的中點(diǎn).
          (1)證明EF∥平面SAD;
          (2)設(shè)SD=2DC,求二面角A-EF-D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在四棱錐S-ABCD中,平面SAD⊥平面ABCD.底面ABCD為矩形,AD=
          2
          a,AB=
          3
          a
          ,SA=SD=a.
          (Ⅰ)求證:CD⊥SA;
          (Ⅱ)求二面角C-SA-D的大。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案