日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=
          5
          ,AA1=3,M為線段BB1上的一動點,則當(dāng)AM+MC1最小時,△AMC1的面積為
           
          分析:先將直三棱柱ABC-A1B1C1沿棱BB1展開成平面連接AC1,與BB1的交點即為滿足AM+MC1最小時的點M,由此可以求得△AMC1的三邊長,再由余弦定理求出其中一角,由面積公式求出面積
          解答:解:將直三棱柱ABC-A1B1C1沿棱BB1展開成平面連接AC1,與BB1的交點即為滿足AM+MC1最小時的點M,
          由于AB=1,BC=2,AA1=3,再結(jié)合棱柱的性質(zhì),可得BM=
          1
          3
          AA1=1,故B1M=2
          由圖形及棱柱的性質(zhì),可得AM=
          2
          ,AC1=
          14
          ,MC1=2
          2

          cos∠AMC1=
          2+8-14
          2
          × 2
          2
          =-
          1
          2

          故sin∠AMC1=
          3
          2

          △AMC1的面積為
          1
          2
          ×
          2
          ×2
          2
          ×
          3
          2
          =
          3

          故答案為
          3
          點評:本題考查棱柱的特征,求解本題的關(guān)鍵是根據(jù)棱柱的結(jié)構(gòu)特征及其棱長等求出三角形的邊長,再由面積公式求面積,本題代數(shù)與幾何相結(jié)合,綜合性強,解題時要注意運算準(zhǔn)確,正確認(rèn)識圖形中的位置關(guān)系.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
          2
          ,側(cè)棱AA1=1,側(cè)面AA1B1B的兩條對角線交于點D,B1C1的中點為M,求證:CD⊥平面BDM.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D為A1C1的中點,E為B1C的中點.
          (1)求直線BE與A1C所成的角;
          (2)在線段AA1中上是否存在點F,使CF⊥平面B1DF,若存在,求出|
          AF
          |;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC所成角的余弦值是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分別為AC,B1C1的中點.
          (Ⅰ)求線段MN的長;
          (Ⅱ)求證:MN∥平面ABB1A1;
          (Ⅲ)線段CC1上是否存在點Q,使A1B⊥平面MNQ?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中點.
          (Ⅰ)證明:A1C1∥平面ACD;
          (Ⅱ)求異面直線AC與A1D所成角的大小;
          (Ⅲ)證明:直線A1D⊥平面ADC.

          查看答案和解析>>

          同步練習(xí)冊答案