日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{Sn}的前n項(xiàng)和為Sn=n2+n.
          (I)求數(shù)列{an}的通項(xiàng)公式;
          (II)令bn=a n×2n,求數(shù)列{bn}的前n項(xiàng)和Tn
          分析:(I)利用a1=s1,n≥2時(shí),an=sn-sn-1,可求通項(xiàng)
          (II)由已知:bn=2n•2n=n•2n+1,利用錯(cuò)位相減可求和
          解答:解:(I)當(dāng)n=1時(shí),a1=s1=2
          當(dāng)n≥2時(shí),an=sn-sn-1=(n2+n)-[(n-1)2+(n-1)]=2n
          n=1時(shí),也適合上式.
          ∴an=2n
          (II)由已知:bn=2n•2n=n•2n+1
          Tn=1•22+2•23+…+n•2n+1
          2Tn=1•23+2•24+…+(n-1)•2n+1+n•2n+2
          ①-②得-Tn=22+23+…+2n+1-n•2n+2
          =
          4(1-2n)
          1-2
          -n•2n+2
          =2n+2-4-n•2n+2
          Tn=(n-1)•2n+2+4
          點(diǎn)評(píng):本題主要考查了數(shù)列的遞推公式a1=s1,n≥2時(shí),an=sn-sn-1,在數(shù)列的通項(xiàng)公式求解中的應(yīng)用,注意檢驗(yàn)a1是否適合通項(xiàng),而錯(cuò)位相減法求解數(shù)列的和是數(shù)列求和的重要方法,要注意掌握
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項(xiàng)為和Sn,點(diǎn)(n,
          Sn
          n
          )
          在直線y=
          1
          2
          x+
          11
          2
          上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9項(xiàng)和為153.
          (Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
          (Ⅱ)設(shè)cn=
          3
          (2an-11)(2bn-1)
          ,數(shù)列{cn}的前n和為Tn,求使不等式Tn
          k
          57
          對(duì)一切n∈N*都成立的最大正整數(shù)k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(an+2,Sn+1)在直線y=4x-5上,其中n∈N*,令bn=an+1-2an,且a1=1.
          (1)求數(shù)列{bn}的通項(xiàng)公式;
          (2)若f(x)=b1x+b2x2+b3x3+…+bnxn,求f?(1)的表達(dá)式,并比較f?(1)與8n2-4n的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=
          1
          2
          ,Sn=n2an-7n(n-1)
          (1)證明:數(shù)列{
          n+1
          n
          Sn}是等差數(shù)列,并求Sn;
          (2)設(shè)|Sn|的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知數(shù)列{Sn}的前n項(xiàng)和為Sn=n2+n.
          (I)求數(shù)列{an}的通項(xiàng)公式;
          (II)令bn=a n×2n,求數(shù)列{bn}的前n項(xiàng)和Tn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案