【題目】已知由自然數(shù)組成的元集合
,非空集合
,且對任意的
,都有
.
(1)當(dāng)時,求所有滿足條件的集合
;
(2)當(dāng)時,求所有滿足條件的集合
的元素總和;
(3)定義一個集合的“交替和”如下:按照遞減的次序重新排列該集合的元素,然后從最大數(shù)開始交替地減、加后繼的數(shù).例如集合的交替和是
,集合
的交替和為
.當(dāng)
時,求所有滿足條件的集合
的“交替和”的總和.
【答案】(1),
,
;(2)
;(3)
【解析】
(1)確定后可知
有偶數(shù)個元素,分別討論兩個元素和四個元素的情況即可得到結(jié)果;
(2)確定可知
有偶數(shù)個元素,分別在兩個、四個、六個和八個元素的情況下求解元素之和,加和得到結(jié)果;
(3)由、
和
時交替和總和的規(guī)律可得到當(dāng)
時,交替和總和為
,代入
即可求得結(jié)果.
(1)當(dāng)時,
是
的非空子集,且
時,
中有偶數(shù)個元素
中有兩個元素時,
或
中有四個元素時,
所有滿足條件的集合
有:
,
,
(2)當(dāng)時,
是
的非空子集,且
時,
中有偶數(shù)個元素
當(dāng)中有兩個元素時,元素之和為:
當(dāng)中有四個元素時,元素之和為:
當(dāng)中有六個元素時,元素之和為:
當(dāng)中有八個元素時,元素之和為:
所有滿足條件的集合
的元素總和為:
(3)當(dāng),
,交替和的總和為:
當(dāng)時,由(1)知,交替和的總和為:
當(dāng)時,
或
或
或
或
或
或
,交替和的總和為:
……以此類推,當(dāng)時,交替和的總和為:
當(dāng)時,
所求交替和的總和為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是
,以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù))
寫出直線的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)曲線經(jīng)過伸縮變換
后得到曲線
,設(shè)
為
上任意一點(diǎn),
求的最小值,并求相應(yīng)的點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,
,
,
,
是
中點(diǎn)(如圖1).將
沿
折起到圖2中
的位置,得到四棱錐
.
(1)將沿
折起的過程中,
平面
是否成立?并證明你的結(jié)論;
(2)若,過
的平面交
于點(diǎn)
,且
為
的中點(diǎn),求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分) 已知雙曲線的兩個焦點(diǎn)為
的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的內(nèi)接等邊三角形
的面積為
(其中
為坐標(biāo)原點(diǎn)).
(1)試求拋物線的方程;
(2)已知點(diǎn)兩點(diǎn)在拋物線
上,
是以點(diǎn)
為直角頂點(diǎn)的直角三角形.
①求證:直線恒過定點(diǎn);
②過點(diǎn)作直線
的垂線交
于點(diǎn)
,試求點(diǎn)
的軌跡方程,并說明其軌跡是何種曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4噸、硝酸鹽18噸;生產(chǎn)1車皮乙種肥料的主要原料是磷酸鹽1噸、硝酸鹽15噸,現(xiàn)庫存磷酸鹽10噸、硝酸鹽66噸,在此基礎(chǔ)上生產(chǎn)這兩種混合肥料。如果生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為12000元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為7000元。那么可產(chǎn)生最大的利潤是__________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)討論函數(shù)的單調(diào)性;
(2)證明:當(dāng)時,函數(shù)
有最小值.設(shè)
的最小值為
,求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,曲線C1是以原點(diǎn)O為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓的一部分.曲線C2是以O(shè)為頂點(diǎn),F(xiàn)2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的交點(diǎn)且∠AF2F1為鈍角,若|AF1|=,|AF2|=
.
(1)求曲線C1和C2的方程;
(2)設(shè)點(diǎn)C是C2上一點(diǎn),若|CF1|=|CF2|,求△CF1F2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的方程為
(
),點(diǎn)
為坐標(biāo)原點(diǎn),點(diǎn)
,
的坐標(biāo)分別為
,
,點(diǎn)
在線段
上,滿足
,直線
的斜率為
.
(1)求橢圓的方程;
(2)若斜率為的直線
交橢圓
于
,
兩點(diǎn),交
軸于點(diǎn)
(
),問是否存在實(shí)數(shù)
使得以
為直徑的圓恒過點(diǎn)
?若存在,求
的值,若不存在,說出理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com