日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知奇函數(shù)f(x)滿足f(x+2)=f(x﹣2),當(dāng)x∈(0,1)時(shí),f(x)=3x , 則f( )=

          【答案】
          【解析】解:由題意可得f(x+4)=f[(x+2)﹣2]=f(x),
          故函數(shù)f(x)的周期T=4,又函數(shù)為奇函數(shù),故有f(﹣x)=﹣f(x),
          ∵當(dāng)x∈(0,1)時(shí),f(x)=3x ,
          ∴f(0.5)=
          ∴f( )=﹣f(0.5)=
          所以答案是:
          【考點(diǎn)精析】本題主要考查了函數(shù)奇偶性的性質(zhì)和函數(shù)的值的相關(guān)知識點(diǎn),需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇;函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如表中給出了2011年~2015年某市快遞業(yè)務(wù)總量的統(tǒng)計(jì)數(shù)據(jù)(單位:百萬件)

          年份

          2011

          2012

          2013

          2014

          2015

          年份代碼

          1

          2

          3

          4

          5

          快遞業(yè)務(wù)總量

          34

          55

          71

          85

          105


          (1)在圖中畫出所給數(shù)據(jù)的折線圖;

          (2)建立一個(gè)該市快遞量y關(guān)于年份代碼x的線性回歸模型;
          (3)利用(2)所得的模型,預(yù)測該市2016年的快遞業(yè)務(wù)總量.
          附:回歸直線方程的斜率和截距的最小二乘估計(jì)公式分別為:
          斜率: ,縱截距:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時(shí)間段車流量與PM2.5的數(shù)據(jù)如表:

          時(shí)間

          周一

          周二

          周三

          周四

          周五

          車流量x(萬輛)

          50

          51

          54

          57

          58

          PM2.5的濃度y(微克/立方米)

          69

          70

          74

          78

          79


          (1)根據(jù)上表數(shù)據(jù),請?jiān)谌鐖D坐標(biāo)系中畫出散點(diǎn)圖;

          (2)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程 ;(保留2位小數(shù))
          (3)若周六同一時(shí)間段車流量是25萬輛,試根據(jù)(2)求出的線性回歸方程預(yù)測,此時(shí)PM2.5的濃度為多少(保留整數(shù))?
          參考公式: = =

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=﹣x3+ax2+1,(a∈R).
          (1)若f(x)圖象上橫坐標(biāo)為1的點(diǎn)處存在垂直于y軸的切線,求a的值;
          (2)若f(x)在區(qū)間(﹣1,2)內(nèi)有兩個(gè)不同的極值點(diǎn),求a取值范圍;
          (3)當(dāng)a=1時(shí),是否存在實(shí)數(shù)m,使得函數(shù)g(x)=x4﹣5x3+(2﹣m)x2+1的圖象于函數(shù)f(x)的圖象恰有三個(gè)不同的交點(diǎn),若存在,試求出實(shí)數(shù)m的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲乙兩家快遞公司其“快遞小哥”的日工資方案如下:甲公司規(guī)定底薪元,每單抽成元;乙公司規(guī)定底薪元,每日前單無抽成,超過單的部分每單抽成

          (1)設(shè)甲乙快遞公司的“快遞小哥”一日工資(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式為,求;

          (2)假設(shè)同一公司的“快遞小哥”一日送貨單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名“快遞小哥”,并記錄其天的送貨單數(shù),得到如下條形圖:

          若將頻率視為概率,回答下列問題:

          ①記乙快遞公司的“快遞小哥”日工資為(單位:元),求的分布列和數(shù)學(xué)期望;

          ②小趙擬到兩家公司中的一家應(yīng)聘“快遞小哥”的工作,如果僅從日收入的角度考慮,請你利用所學(xué)的統(tǒng)計(jì)學(xué)知識為他作出選擇,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)F(0,1),直線l:y=﹣1,P為平面上的動(dòng)點(diǎn),過點(diǎn)P作直線l的垂線,垂足為Q,且
          (1)求動(dòng)點(diǎn)P的軌跡C的方程;
          (2)已知圓M過定點(diǎn)D(0,2),圓心M在軌跡C上運(yùn)動(dòng),且圓M與x軸交于A、B兩點(diǎn),設(shè)|DA|=l1 , |DB|=l2 , 求 的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】五一節(jié)期間,某商場為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng),活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券.(假定指針等可能地停在任一位置,指針落在區(qū)域的邊界時(shí),重新轉(zhuǎn)一次)指針?biāo)诘膮^(qū)域及對應(yīng)的返劵金額見表.
          例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

          (1)已知顧客甲消費(fèi)后獲得n次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會,已知他每轉(zhuǎn)一次轉(zhuǎn)盤指針落在區(qū)域邊界的概率為p,每次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的結(jié)果相互獨(dú)立,設(shè)ξ為顧客甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤指針落在區(qū)域邊界的次數(shù),ξ的數(shù)學(xué)期望Eξ= ,方差Dξ= ,求n、p的值;
          (2)顧客乙消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為η(元).求隨機(jī)變量η的分布列和數(shù)學(xué)期望.

          指針位置

          A區(qū)域

          B區(qū)域

          C區(qū)域

          返券金額(單位:元)

          60

          30

          0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)= 的值域是(
          A.R
          B.[﹣8,1]
          C.[﹣9,+∞)
          D.[﹣9,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于, 兩點(diǎn).

          (1)求圓的直角坐標(biāo)方程及弦的長;

          (2)動(dòng)點(diǎn)在圓上(不與, 重合),試求的面積的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案