日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}的首項(xiàng)為a1=3,通項(xiàng)an與前n項(xiàng)和sn之間滿足2an=Sn•Sn-1(n≥2).
          (1)求證:數(shù)列{
          1Sn
          }
          是等差數(shù)列;
          (2)求數(shù)列{an}的通項(xiàng)公式;
          (3)求數(shù)列{an}中的最大項(xiàng).
          分析:(1)把2an=Sn•Sn-1(n≥2)中的an化為Sn-Sn-1,然后兩邊同除以Sn•Sn-1.結(jié)合等差數(shù)列定義可證;
          (2)由(1)可求得Sn,根據(jù)an=
          S1,n=1
          Sn-Sn-1,n≥2
          即可求得{an}的通項(xiàng)公式;
          (3)根據(jù)n≥3時(shí)an的單調(diào)性及前三項(xiàng)即可求得最大項(xiàng);
          解答:解(1)由2an=Sn•Sn-1(n≥2),得2(Sn-Sn-1)=Sn•Sn-1
          所以
          1
          Sn
          -
          1
          Sn-1
          =-
          1
          2
          (n≥2),
          所以{
          1
          Sn
          }
          是等差數(shù)列;
          (2)由(1)知,
          1
          Sn
          =
          1
          3
          +(n-1)(-
          1
          2
          )

          所以Sn=
          6
          5-3n
          ,
          當(dāng)n=1時(shí),a1=3,
          當(dāng)n≥2時(shí),an=Sn-Sn-1=
          18
          (3n-5)(3n-8)
          ,
          an=
          3,n=1
          18
          (3n-5)(3n-8)
          ,n≥2
          ;
          (3)由a1,a2,a3及n≥3時(shí)an的單調(diào)性知:a3=
          9
          2
          是最大項(xiàng);
          點(diǎn)評(píng):本題考查利用數(shù)列遞推公式求數(shù)列通項(xiàng)、等差數(shù)列的定義及其判斷等知識(shí),屬中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的首項(xiàng)a1=
          1
          2
          ,前n項(xiàng)和Sn=n2an(n≥1).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)b1=0,bn=
          Sn-1
          Sn
          (n≥2)
          ,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:Tn
          n2
          n+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的首項(xiàng)為a1=2,前n項(xiàng)和為Sn,且對(duì)任意的n∈N*,當(dāng)n≥2,時(shí),an總是3Sn-4與2-
          52
          Sn-1
          的等差中項(xiàng).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)bn=(n+1)an,Tn是數(shù)列{bn}的前n項(xiàng)和,n∈N*,求Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•江門一模)已知數(shù)列{an}的首項(xiàng)a1=1,若?n∈N*,an•an+1=-2,則an=
          1,n是正奇數(shù)
          -2,n是正偶數(shù)
          1,n是正奇數(shù)
          -2,n是正偶數(shù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的首項(xiàng)a1=
          2
          3
          ,an+1=
          2an
          an+1
          ,n∈N+
          (Ⅰ)設(shè)bn=
          1
          an
          -1
          證明:數(shù)列{bn}是等比數(shù)列;
          (Ⅱ)數(shù)列{
          n
          bn
          }的前n項(xiàng)和Sn

          查看答案和解析>>

          同步練習(xí)冊答案