日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=sin2 + sin cos . (Ⅰ)求f(x)的最小正周期;
          (Ⅱ)若x∈[ ,π],求f(x)的最大值與最小值.

          【答案】解:(Ⅰ)函數(shù)f(x)=sin2 + sin cos

          = + sinx

          = sinx﹣ cosx+

          =sin(x﹣ )+ ,

          由T= =2π,

          知f(x)的最小正周期是2π;

          (Ⅱ)由f(x)=sin(x﹣ )+

          且x∈[ ,π],

          ≤x﹣ ,

          ≤sin(x﹣ )≤1,

          ∴1≤sin(x﹣ )+ ,

          ∴當(dāng)x= 時,f(x)取得最大值 ,

          x=π時,f(x)取得最小值1.


          【解析】(Ⅰ)化函數(shù)f(x)為正弦型函數(shù),由T= 求出f(x)的最小正周期;(Ⅱ)根據(jù)正弦函數(shù)的圖象與性質(zhì),求出f(x)在x∈[ ,π]上的最大值與最小值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在R上的函數(shù)f(x)的圖象關(guān)于點(﹣ ,0)成中心對稱,且對任意的實數(shù)x都有 ,f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)++f(2 017)=(
          A.0
          B.﹣2
          C.1
          D.﹣4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于函數(shù)f(x),若在定義域內(nèi)存在實數(shù)x,滿足f(﹣x)=﹣f(x),則稱f(x)為“局部奇函數(shù)”. (I) 已知二次函數(shù)f(x)=ax2+2bx﹣3a(a,b∈R),試判斷f(x)是否為“局部奇函數(shù)”?并說明理由;
          (II) 設(shè)f(x)=2x+m﹣1是定義在[﹣1,2]上的“局部奇函數(shù)”,求實數(shù)m的取值范圍;
          (III) 設(shè)f(x)=4x﹣m2x+1+m2﹣3,若f(x)不是定義域R上的“局部奇函數(shù)”,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C:x2+y2﹣4x﹣14y+45=0及點Q(﹣2,3).
          (1)若M為圓C上任一點,求|MQ|的最大值和最小值;
          (2)若實數(shù)m,n滿足m2+n2﹣4m﹣14n+45=0,求k= 的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(題類A)以橢圓 +y2=1(a>1)短軸端點A(0,1)為直角頂點,作橢圓內(nèi)接等腰直角三角形,試判斷并推證能作出多少個符合條件的三角形.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】東莞某家具生產(chǎn)廠家根據(jù)市場調(diào)查分析,決定調(diào)整新產(chǎn)品生產(chǎn)方案,準(zhǔn)備每周(按40個工時計算)生產(chǎn)書桌、書柜、電腦椅共120張,且書桌至少生產(chǎn)20張.已知生產(chǎn)這些家具每張所需工時和每張產(chǎn)值如表:

          家具名稱

          書桌

          書柜

          電腦椅

          產(chǎn)值(千元)

          4

          3

          2

          問每周應(yīng)生產(chǎn)書桌、書柜、電腦椅各多少張,才能使產(chǎn)值最高?最高產(chǎn)值是多少?(以千元為單位)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知F是拋物線y2=x的焦點,A,B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到y(tǒng)軸的距離為( )
          A.
          B.1
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC內(nèi),∠OPC=45°,∠OPA=60°,則∠OPB的余弦值為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=alnx+ +x(a>0).若曲線y=f(x)在點(1,f(1))處的切線與直線x﹣2y=0垂直, (Ⅰ)求實數(shù)a的值;
          (Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          同步練習(xí)冊答案