日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直線l:(m2+m-2)x+(m2+3m+2)y-5=0,若l與x軸平行,則m=------------;若l與y軸平行,則m=--------------------。

           

          【答案】

          1,-1

          【解析】略

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知矩陣M
          2-3
          1-1
          所對(duì)應(yīng)的線性變換把點(diǎn)A(x,y)變成點(diǎn)A′(13,5),試求M的逆矩陣及點(diǎn)A的坐標(biāo).
          (2)已知直線l:3x+4y-12=0與圓C:
          x=-1+2cosθ
          y=2+2sinθ
          (θ為參數(shù) )試判斷他們的公共點(diǎn)個(gè)數(shù);
          (3)解不等式|2x-1|<|x|+1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知M(m,m2)、N(n,n2)是拋物線C:y=x2上兩個(gè)不同點(diǎn),且m2+n2=1,m+n≠0,直線l是線段MN的垂直平分線.設(shè)橢圓E的方程為
          x2
          2
          +
          y2
          a
          =1(a>0,a≠2)

          (Ⅰ)當(dāng)M、N在拋物線C上移動(dòng)時(shí),求直線L斜率k的取值范圍;
          (Ⅱ)已知直線L與拋物線C交于A、B、兩個(gè)不同點(diǎn),L與橢圓E交于P、Q兩個(gè)不同點(diǎn),設(shè)AB中點(diǎn)為R,OP中點(diǎn)為S,若
          OR
          OS
          =0
          ,求橢圓E離心率的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直線l的斜率k=1-m2(m∈R),則傾斜角θ的取值范圍為
          [0,
          π
          4
          ]∪(
          π
          2
          ,π)
          [0,
          π
          4
          ]∪(
          π
          2
          ,π)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)選修4-4:矩陣與變換
          已知曲線C1:y=
          1
          x
          繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°后可得到曲線C2:y2-x2=2,
          (I)求由曲線C1變換到曲線C2對(duì)應(yīng)的矩陣M1;    
          (II)若矩陣M2=
          20
          03
          ,求曲線C1依次經(jīng)過矩陣M1,M2對(duì)應(yīng)的變換T1,T2變換后得到的曲線方程.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知直線l的極坐標(biāo)方程是ρcosθ+ρsinθ-1=0.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,在曲線C:
          x=-1+cosθ
          y=sinθ
          (θ為參數(shù))上求一點(diǎn),使它到直線l的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.
          (3)(選修4-5:不等式選講)
          將12cm長(zhǎng)的細(xì)鐵線截成三條長(zhǎng)度分別為a、b、c的線段,
          (I)求以a、b、c為長(zhǎng)、寬、高的長(zhǎng)方體的體積的最大值;
          (II)若這三條線段分別圍成三個(gè)正三角形,求這三個(gè)正三角形面積和的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案