日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,三棱錐P-ABC中,M是AC的中點(diǎn),Q是BM的中點(diǎn),若實(shí)數(shù)x,y,z滿足
          PQ
          =x
          PA
          +y
          PB
          +z
          PC
          ,則x-y+z=
           
          分析:利用空間向量基本定理,將
          PQ
          ,化成
          PA
          ,
          PB
          ,
          PC
          的和的形式
          .求出系數(shù).進(jìn)而得到結(jié)果.
          解答:解:
          PQ
          =
          PB
          +
          BQ
          =
          PB
          +
          1
          2
          BM
          =
          PB
          +
          1
          2
          PM
           -
          PB)
          =
          PB
          +
          1
          2
          [
          1
          2
          (
          PA
          +
          PC)
          -
          PB]
          =
          1
          4
          PA
          +
          1
          2
          PB
          +
          1
          4
          PC

          ∴x=
          1
          4
          ,y=
          1
          2
          ,z=
          1
          4

          ∴x-y+z=0.
          故答案為0.
          點(diǎn)評(píng):本題考查空間向量基本定理的應(yīng)用.同時(shí)考查轉(zhuǎn)化能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點(diǎn),且CD⊥平面PAB
          (Ⅰ)求證:AB⊥平面PCB;
          (Ⅱ)求二面角C-PA-B的大小的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2006•石景山區(qū)一模)如圖,三棱錐P-ABC中,
          PA
          AB
          =
          PA
          AC
          =
          AB
          AC
          =0
          PA
          2
          =
          AC
          2
          =4
          AB
          2

          (Ⅰ)求證:AB⊥平面PAC;
          (Ⅱ)若M為線段PC上的點(diǎn),設(shè)
          |
          PM|
          |PC
          |
          ,問λ為何值時(shí)能使直線PC⊥平面MAB;
          (Ⅲ)求二面角C-PB-A的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•湖南模擬)如圖,三棱錐P-ABC中,側(cè)面PAC⊥底面ABC,∠APC=90°,且AB=4,AP=PC=2,BC=2
          2

          (Ⅰ)求證:PA⊥平面PBC;
          (Ⅱ)若E為側(cè)棱PB的中點(diǎn),求直線AE與底面ABC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•德陽(yáng)二模)如圖,三棱錐P-ABC中,PA丄面ABC,∠ABC=90°,PA=AB=1,BC=2,則P-ABC的外接球的表面積為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖在三棱錐P-ABC中,AB⊥PC,AC=2,BC=4,AB=2
          3
          ,∠PCA=30°.
          (1)求證:AB⊥平面PAC. (2)設(shè)二面角A-PC-B•的大小為θ•,求tanθ•的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案