日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)AB是橢圓C1長軸的兩個端點(diǎn),若C上存在點(diǎn)M滿足∠AMB120°,則m的取值范圍是______.

          【答案】01][9,+∞

          【解析】

          分焦點(diǎn)在軸上兩種情況進(jìn)行討論,再根據(jù)臨界條件點(diǎn)在橢圓的短軸端點(diǎn)上,進(jìn)而求解的臨界值,進(jìn)而求得取值范圍即可.

          假設(shè)橢圓的焦點(diǎn)在x軸上,則0m3時,

          假設(shè)M位于短軸的端點(diǎn)時,∠AMB取最大值,要使橢圓C上存在點(diǎn)M滿足∠AMB120°,∠AMB≥120°,∠AMO≥60°,tanAMOtan60°,

          解得:0m≤1;

          當(dāng)橢圓的焦點(diǎn)在y軸上時,m3,

          假設(shè)M位于短軸的端點(diǎn)時,∠AMB取最大值,要使橢圓C上存在點(diǎn)M滿足∠AMB120°,∠AMB≥120°,∠AMO≥60°,tanAMOtan60°,解得:m≥9,

          m的取值范圍是(0,1][9,+∞

          故答案為:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某群體的人均通勤時間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng))的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

          (1)當(dāng)在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?

          (2)求該地上班族的人均通勤時間的表達(dá)式;討論的單調(diào)性,并說明其實際意義.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐中,平面,,的中點(diǎn),的中點(diǎn),點(diǎn)在線段上,,.

          (Ⅰ)求證:平面;

          (Ⅱ)若,求證:平面;

          (Ⅲ)求與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列是首項為1的等差數(shù)列,數(shù)列滿足,且.

          (1)求數(shù)列的通項公式;

          (2)令,求數(shù)列的前項和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖),且傾斜時底面的一條棱始終在桌面上(圖、均為容器的縱截面).

          1)要使傾斜后容器內(nèi)的溶液不會溢出,角的最大值是多少?

          2)現(xiàn)需要倒出不少于的溶液,當(dāng)時,能實現(xiàn)要求嗎?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在六條棱長分別為2、3、34、5、5的所有四面體中,最大的體積是多少?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】新高考3+3最大的特點(diǎn)就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機(jī)構(gòu)為了了解學(xué)生對全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān)決定從某學(xué)校高一年級的650名學(xué)生中隨機(jī)抽取男生、女生各25人進(jìn)行模擬選科經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多10

          1)請完成下面的2×2列聯(lián)表;

          選擇全理

          不選擇全理

          合計

          男生

          5

          女生

          合計

          2)估計有多大把握認(rèn)為選擇全理與性別有關(guān),并說明理由.

          附:,其中na+b+c+d

          PK2k

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          k

          2.072

          2.076

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          I)求曲線在點(diǎn)處的切線方程.

          (Ⅱ)若直線為曲線的切線,且經(jīng)過原點(diǎn),求直線的方程及切點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知的頂點(diǎn)邊上中線所在直線方程為,邊上的高所在直線方程為,求:

          1)頂點(diǎn)的坐標(biāo);

          2)求外接圓的方程.

          查看答案和解析>>

          同步練習(xí)冊答案