日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知平面α,β,γ,且平面α平面β,平面α⊥平面γ;
          求證:平面β⊥平面γ
          證明:如圖,

          ∵平面α⊥平面γ,∴平面α與平面γ相交,設(shè)交線為m,
          在平面α內(nèi)作直線a⊥m,∵平面α⊥平面γ,∴a⊥γ,
          在平面β內(nèi)任取一點(diǎn)O,由直線a和點(diǎn)O確定平面M,設(shè)M∩β于b,
          ∵平面α平面β,由面面平行的判定定理,得ab,
          ∵ab,a⊥γ,∴b⊥γ
          又∵b?β,
          ∴平面β⊥平面γ.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          四邊形ABCD是邊長為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1.E為BC的中點(diǎn).
          (1)求異面直線NE與AM所成角的余弦值;
          (2)在線段AN上是否存在點(diǎn)S,使得ES⊥平面AMN?
          (3)若存在,求線段AS的長;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知∠BAC在平面α內(nèi),P∉α,∠PAB=∠PAC,求證:點(diǎn)P在平面α上的射影在∠BAC的平分線上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          ABCD為平行四邊形,P為平面ABCD外一點(diǎn),PA⊥面ABCD,且PA=AD=2,AB=1,AC=
          3

          (1)求證:平面ACD⊥平面PAC;
          (2)求異面直線PC與BD所成角的余弦值;
          (3)設(shè)二面角A-PC-B的大小為θ,試求tanθ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在三棱錐P-ABC中,E,F(xiàn)分別為AC,BC的中點(diǎn).
          (1)求證:EF平面PAB;
          (2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求證:平面PEF⊥平面PBC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,菱形ABCD的邊長為6,∠BAD=60°,AC∩BD=O.將菱形ABCD沿對角線AC折起,得到三棱錐B-ACD,點(diǎn)M是棱BC的中點(diǎn),DM=3
          2

          (Ⅰ)求證:OM平面ABD;
          (Ⅱ)求證:平面ABC⊥平面MDO;
          (Ⅲ)求三棱錐M-ABD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知某幾何體的三視圖如圖所示,其中左視圖是邊長為2的正三角形,主視圖是矩
          形,且AA1=3,設(shè)D為AA1的中點(diǎn).
          (1)作出該幾何體的直觀圖并求其體積;
          (2)求證:平面BB1C1C⊥平面BDC1;
          (3)BC邊上是否存在點(diǎn)P,使AP平面BDC1?若不存在,說明理由;若存在,證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          關(guān)于直線a、b、l,以及平面α、β,下列命題中正確的是( 。
          A.若aα,bα,則ab
          B.若aα,b⊥a,則b⊥α
          C.若a?α,b?α,且l⊥a,l⊥b,則l⊥α
          D.若a⊥α,aβ,則α⊥β

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知正四棱柱中,, 的中點(diǎn),則點(diǎn)到平面的距離為()
          A.1B.C.D.2

          查看答案和解析>>

          同步練習(xí)冊答案