日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ()如圖,在五面體ABCDEF中,F(xiàn)A 平面ABCD, AD//BC//FE,ABAD,M為EC的中點(diǎn),AF=AB=BC=FE=AD

          (I)  求異面直線BF與DE所成的角的大。

          (II)  證明平面AMD平面CDE;

          (III)求二面角A-CD-E的余弦值。

          ⑴60°,⑵略,⑶


          解析:

          本小題要考查異面直線所成的角、平面與平面垂直、二面角等基礎(chǔ)知識(shí),考查用空間向量解決立體幾何問(wèn)題的方法,考查空間想像能力、運(yùn)算能力和推理論證能力。滿分12分.

          方法一:(Ⅰ)由題設(shè)知,BF//CE,所以∠CED(或其補(bǔ)角)為異面直線BF與DE所成的角。設(shè)P為AD的中點(diǎn),連結(jié)EP,PC。因?yàn)镕EAP,所以FAEP,同理ABPC。又FA⊥平面ABCD,所以EP⊥平面ABCD。而PC,AD都在平面ABCD內(nèi),故EP⊥PC,EP⊥AD。由AB⊥AD,可得PC⊥AD設(shè)FA=a,則EP=PC=PD=a,CD=DE=EC=,故∠CED=60°。所以異面直線BF與DE所成的角的大小為60°

          (II)證明:因?yàn)?img width=451 height=21 src="http://thumb.zyjl.cn/pic1/1899/sx/22/330222.gif" >

          (III)

          由(I)可得,

          方法二:如圖所示,建立空間直角坐標(biāo)系,

          點(diǎn)為坐標(biāo)原點(diǎn)。設(shè)依題意得      

          (I) 

          所以異面直線所成的角的大小為.

          (II)證明:  

          (III)

          又由題設(shè),平面的一個(gè)法向量為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在五面體EF-ABCD中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=l,AD=2
          2
          ,∠BAD=∠CDA=45°.
          ①求異面直線CE與AF所成角的余弦值;
          ②證明:CD⊥平面ABF;
          ③求二面角B-EF-A的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在五面體ABCDEF中,點(diǎn)O是矩形ABCD的對(duì)角線的交點(diǎn),△ABF、△CDE是等邊三角形,CD=1,EF=
          12
          BC=1,EF∥BC,M為EF的中點(diǎn).
          (1)證明MO⊥平面ABCD;
          (2)求二面角E-CD-A的余弦值;
          (3)求點(diǎn)A到平面CDE的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在五面體ABCDEF中,四邊形ABCD為矩形,對(duì)角線AC,BD的交點(diǎn)為O,△ABF和△DEC為等邊三角形,棱EF∥BC,EF=
          12
          BC,AB=1,BC=2,M為EF的中點(diǎn),
          ①求證:OM⊥平面ABCD;
          ②求二面角E-CD-A的大;
          ③求點(diǎn)A到平面CDE的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在五面體P-ABCD中,底面ABCD是平行四邊形,∠BAD=60°,AB=4,AD=2,PB=
          15
          ,PD=
          3

          (1)求證:BD⊥平面PAD;
          (2)若PD與底面ABCD成60°的角,試求二面角P-BC-A的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•廣元二模)如圖,在五面體EF-ABCD中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=l,AD=2
          2
          ,∠BAD=∠CDA=45°.
          ①證明:CD⊥平面ABF;
          ②求二面角B-EF-A的正切值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案