日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)f(x)=ax2+bx+c.
          (1)若a>b>c,且f(1)=0,證明f(x)的圖象與x軸有2個交點(diǎn);
          (2)在(1)的條件下,是否存在m∈R,使得f(m)=-a成立時,f(m+3)為正數(shù),若存在,證明你的結(jié)論,若不存在,請說明理由;
          (3)若對x1,x2∈R,且x1<x2,f(x1)≠f(x2),方程f(x)=[f(x1)+f(x2)]有兩個不等實(shí)根,證明必有一個根屬于(x1,x2).
          【答案】分析:(1)由f(1)=0,得a+b+c=0,根據(jù)a>b>c,可知a>0,且c<0,再利用根的判別式可證;
          (2)由條件知方程的一根為1,另一根滿足-2<x2<0.由于f(m)=-a<0,可知m∈(-2,1),從而m+3>1,根據(jù)函數(shù)y=f(x)在[1,+∞)上單調(diào)遞增,可知(m+3)>0成立.
          (3)構(gòu)造函數(shù)g(x)=f(x)-[f(x1)+f(x2)],進(jìn)而證明g(x1)g(x2)<0,所以方程g(x)=0在(x1,x2)內(nèi)有一根,故方程f(x)=[f(x1)+f(x2)]必有一根屬于(x1,x2).
          解答:解:(1)因?yàn)閒(1)=0,
          所以a+b+c=0,
          又因?yàn)閍>b>c,
          所以a>0,且c<0,
          因此ac<0,
          所以△=b2-4ac>0,
          因此f(x)的圖象與x軸有2個交點(diǎn).
          (2)由(1)可知方程f(x)=0有兩個不等的實(shí)數(shù)根,不妨設(shè)為x1和x2
          因?yàn)閒(1)=0,
          所以f(x)=0的一根為x1=1,
          因?yàn)閤1+x2=-,x1x2=,
          所以x2=--1=,
          因?yàn)閍>b>c,a>0,且c<0,
          所以-2<x2<0.
          因?yàn)橐骹(m)=-a<0,
          所以m∈(x1,x2),
          因此m∈(-2,1),
          則m+3>1,
          因?yàn)楹瘮?shù)y=f(x)在[1,+∞)上單調(diào)遞增;
          所以f(m+3)>f(1)=0成立.
          (3)構(gòu)造函數(shù)g(x)=f(x)-[f(x1)+f(x2)],
          則g(x1)=f(x1)-[f(x1)+f(x2)]=[f(x1)-f(x2)],
          g(x2)=f(x2)-[f(x1)+f(x2)]=[f(x2)-f(x1)],
          于是g(x1)g(x2)=[f(x1)-f(x2)][f(x2)-f(x1)]
          =-[f(x1)-f(x2)]2,
          因?yàn)閒(x1)≠f(x2),
          所以g(x1)g(x2)=-[f(x1)-f(x2)]2<0,
          所以方程g(x)=0在(x1,x2)內(nèi)有一根,
          即方程f(x)=[f(x1)+f(x2)]必有一根屬于(x1,x2).
          點(diǎn)評:本題以二次函數(shù)為載體,考查方程根的探求,考查函數(shù)值的確定及函數(shù)的零點(diǎn)問題,有一定的綜合性.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
          (I)若函數(shù)的圖象經(jīng)過原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值.
          (Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
          (Ⅰ)求f(x)的表達(dá)式;
          (Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=x2-16x+q+3.
          (1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
          (2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時,f(x)的值域?yàn)閰^(qū)間D,且D的長度為12-t?請對你所得的結(jié)論給出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
          f(x)x-1

          (1)求a的值;
          (2)k(k∈R)如何取值時,函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
          (3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
          (2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過原點(diǎn),求f(x)的解析式.

          查看答案和解析>>

          同步練習(xí)冊答案