日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 某公園內(nèi)有一橢圓形景觀水池,經(jīng)測(cè)量知,橢圓長軸長為20米,短軸長為16米.現(xiàn)以橢圓長軸所在直線為x軸,短軸所在直線為y軸,建立平面直角坐標(biāo)系,如圖所示.
          (I)為增加景觀效果,擬在水池內(nèi)選定兩點(diǎn)安裝水霧噴射口,要求橢圓上各點(diǎn)到這兩點(diǎn)距離之和都相等,請(qǐng)指出水霧噴射口的位置(用坐標(biāo)表示),并求橢圓的方程;
          (Ⅱ)為增強(qiáng)水池的觀賞性,擬劃出一個(gè)以橢圓的長軸頂點(diǎn)A、短軸頂點(diǎn)B及橢圓上某點(diǎn)M構(gòu)成的三角形區(qū)域進(jìn)行夜景燈光布置.請(qǐng)確定點(diǎn)肘的位置,使此三角形區(qū)域面積最大.

          解:(I)設(shè)橢圓的長軸長為2a,短軸長為2b,則2a=20,2b=16,∴a=10,b=8,c=6
          由橢圓定義知,水霧噴射口的位置應(yīng)選擇再橢圓的兩個(gè)焦點(diǎn)處,其左邊為(-6,0),(6,0)
          橢圓的方程為;
          (Ⅱ)由題知A(10,0),B(8,0)
          記點(diǎn)M到直線AB的距離為d,過點(diǎn)M與AB平行的直線為l
          ∵|AB|=2,∴
          要使△ABM的面積最大,則只需d最大,即l與AB這兩平行線間的距離最大
          ∴l(xiāng)與橢圓相切于第三象限的點(diǎn)M,即為所求的點(diǎn)
          ,∴設(shè)l的方程為:y=-+m
          代入到橢圓方程,消元可得32x2-40mx+25m2-1600=0①
          令△=1600m2-4×32×(25m2-1600)=0,可得m=±,由題意,m=-8
          代入(1),可得x=-5,代入直線l的方程,可得y=-4
          ∴M(-5,-4
          ∴當(dāng)點(diǎn)M選擇在(-5,-4)時(shí),三角形區(qū)域面積最大.
          分析:(I)設(shè)橢圓的長軸長為2a,短軸長為2b,則2a=20,2b=16,由橢圓定義知水霧噴射口的位置,并可得橢圓的方程;
          (Ⅱ)記點(diǎn)M到直線AB的距離為d,過點(diǎn)M與AB平行的直線為l,則,要使△ABM的面積最大,則只需d最大,即l與AB這兩平行線間的距離最大,設(shè)出方程代入橢圓方程即可求解.
          點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•廈門模擬)某公園內(nèi)有一橢圓形景觀水池,經(jīng)測(cè)量知,橢圓長軸長為20米,短軸長為16米.現(xiàn)以橢圓長軸所在直線為x軸,短軸所在直線為y軸,建立平面直角坐標(biāo)系,如圖所示.
          (I)為增加景觀效果,擬在水池內(nèi)選定兩點(diǎn)安裝水霧噴射口,要求橢圓上各點(diǎn)到這兩點(diǎn)距離之和都相等,請(qǐng)指出水霧噴射口的位置(用坐標(biāo)表示),并求橢圓的方程;
          (Ⅱ)為增強(qiáng)水池的觀賞性,擬劃出一個(gè)以橢圓的長軸頂點(diǎn)A、短軸頂點(diǎn)B及橢圓上某點(diǎn)M構(gòu)成的三角形區(qū)域進(jìn)行夜景燈光布置.請(qǐng)確定點(diǎn)肘的位置,使此三角形區(qū)域面積最大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013屆福建省高二期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

          某公園內(nèi)有一橢圓形景觀水池,經(jīng)測(cè)量知,橢圓長軸長為20米,短軸長為16米,現(xiàn)以橢圓長軸所在直線為軸,短軸所在直線為軸,建立平面直角坐標(biāo)系,如圖所示:

          (1)為增加景觀效果,擬在水池內(nèi)選定兩點(diǎn)安裝水霧噴射口,要求橢圓上各點(diǎn)到這兩點(diǎn)距離之和都相等,請(qǐng)指出水霧噴射口的位置(用坐標(biāo)表示),并求橢圓的方程。

          (2)為了增加水池的觀賞性,擬劃出一個(gè)以橢圓的長軸頂點(diǎn)A、短軸頂點(diǎn)B及橢圓上某點(diǎn)M構(gòu)成的三角形區(qū)域進(jìn)行夜景燈光布置,請(qǐng)確定點(diǎn)M的位置,使此三角形區(qū)域面積最大。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年福建省廈門市高三5月適應(yīng)性考試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          某公園內(nèi)有一橢圓形景觀水池,經(jīng)測(cè)量知,橢圓長軸長為20米,短軸長為16米.現(xiàn)以橢圓長軸所在直線為x軸,短軸所在直線為y軸,建立平面直角坐標(biāo)系,如圖所示.
          (I)為增加景觀效果,擬在水池內(nèi)選定兩點(diǎn)安裝水霧噴射口,要求橢圓上各點(diǎn)到這兩點(diǎn)距離之和都相等,請(qǐng)指出水霧噴射口的位置(用坐標(biāo)表示),并求橢圓的方程;
          (Ⅱ)為增強(qiáng)水池的觀賞性,擬劃出一個(gè)以橢圓的長軸頂點(diǎn)A、短軸頂點(diǎn)B及橢圓上某點(diǎn)M構(gòu)成的三角形區(qū)域進(jìn)行夜景燈光布置.請(qǐng)確定點(diǎn)肘的位置,使此三角形區(qū)域面積最大.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案