日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在直角梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD=2DC,四邊形ABEF是正方形.將正方形ABEF沿AB折起到四邊形ABE1F1的位置,使平面ABE1F1⊥平面ABCD,M為AF1的中點(diǎn),如圖2.
          (I)求證:AC⊥BM;
          (Ⅱ)求平面CE1M與平面ABE1F1所成銳二面角的余弦值.

          【答案】解:(Ⅰ)證明四邊形ABE1F1是正方形,∴BE1⊥AB.

          平面ABE1F1⊥平面ABCD,平面ABE1F1∩平面ABCD=AB,BE1面ABE1F1

          ∴BE1⊥平面ABCD,

          ∵AC平面ABCD,∴BE1⊥AC.

          設(shè)AD=1,則AC=AB= ,∴AC⊥AB且AB∩BE1=B.

          ∴AC⊥面ABE1F1,又MB面ABE1F1∴AC⊥MB.

          (Ⅱ)如圖以B為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.

          則A(1,1,0),B(0,0,0),C(2,0,0),E1(0,0, ),M(1,1, ).

          由題意得, , , ,

          設(shè)面CE1M的一個(gè)法向量為 ,

          ,可得

          又平面ABE1F1得法向量為

          設(shè)平面CE1M與平面ABE1F1所成銳二面角為θ.

          cosθ=|cos |=

          ∴平面CE1M與平面ABE1F1所成銳二面角的余弦值為


          【解析】(Ⅰ)只需證明BE1⊥AC.AC⊥AB且AB,可得AC⊥面ABE1F1,AC⊥MB.(Ⅱ)以B為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.則A(1,1,0),B(0,0,0),C(2,0,0),E1(0,0, ),M(1,1, ).利用向量求解
          【考點(diǎn)精析】掌握直線與平面垂直的性質(zhì)是解答本題的根本,需要知道垂直于同一個(gè)平面的兩條直線平行.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】的內(nèi)角 的對(duì)邊分別為 ,已知

          (1)求 ∠ ;
          (2)若 ,求 的面積 的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓E:mx2+y2=1(m>0).
          (Ⅰ)若橢圓E的右焦點(diǎn)坐標(biāo)為 ,求m的值;
          (Ⅱ)由橢圓E上不同三點(diǎn)構(gòu)成的三角形稱為橢圓的內(nèi)接三角形.若以B(0,1)為直角頂點(diǎn)的橢圓E的內(nèi)接等腰直角三角形恰有三個(gè),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 若S9=81,a3+a5=14.
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)bn= ,若{bn}的前n項(xiàng)和為Tn , 證明:Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】以下莖葉圖記錄了甲、乙兩組各六名學(xué)生在一次數(shù)學(xué)測試中的成績(單位:分),規(guī)定85分以上(含85分)為優(yōu)秀,現(xiàn)分別從甲、乙兩組中隨機(jī)選取一名同學(xué)的數(shù)學(xué)成績,則兩人成績都為優(yōu)秀的概率是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=|x﹣a|+|2x+2|﹣5(a∈R). (Ⅰ)試比較f(﹣1)與f(a)的大小;
          (Ⅱ)當(dāng)a≥﹣1時(shí),若函數(shù)f(x)的圖象和x軸圍成一個(gè)三角形,則實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知 ()是偶函數(shù),當(dāng)時(shí),

          (1) 求的解析式;

          (2) 若不等式時(shí)都成立,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)是定義域?yàn)椋?,+∞)的單調(diào)函數(shù),若對(duì)任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解,則實(shí)數(shù)a的取值范圍是(
          A.0<a≤5
          B.a<5
          C.0<a<5
          D.a≥5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】以下莖葉圖記錄了甲、乙兩個(gè)籃球隊(duì)在3次不同比賽中的得分情況.乙隊(duì)記錄中有一個(gè)數(shù)字模糊,無法確認(rèn),假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并在圖中以m表示.那么在3次比賽中,乙隊(duì)平均得分超過甲隊(duì)平均得分的概率是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案