日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 用數(shù)學(xué)歸納法證明“2n>n2+1對(duì)于n≥n0的自然數(shù)n都成立”時(shí),第一步證明中的起始值n0應(yīng)。ā 。
          分析:根據(jù)數(shù)學(xué)歸納法的步驟,結(jié)合本題的題意,是要驗(yàn)證n=1,2,3,4,5時(shí),命題是否成立;可得答案.
          解答:解:根據(jù)數(shù)學(xué)歸納法的步驟,首先要驗(yàn)證當(dāng)n取第一個(gè)值時(shí)命題成立;
          結(jié)合本題,要驗(yàn)證n=1時(shí),左=21=2,右=12+1=2,2n>n2+1不成立,
          n=2時(shí),左=22=4,右=22+1=5,2n>n2+1不成立,
          n=3時(shí),左=23=8,右=32+1=10,2n>n2+1不成立,
          n=4時(shí),左=24=16,右=42+1=17,2n>n2+1不成立,
          n=5時(shí),左=25=32,右=52+1=26,2n>n2+1成立,
          因?yàn)閚>5成立,所以2n>n2+1恒成立.
          故選C.
          點(diǎn)評(píng):本題考查數(shù)學(xué)歸納法的運(yùn)用,解此類問題時(shí),注意n的取值范圍.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          數(shù)列{an}滿足Sn=2n-an,n∈N+.(Sn為前n項(xiàng)和)
          (1)計(jì)算a1,a2,a3,a4,并由此猜想an;(2)用數(shù)學(xué)歸納法證明(1)中的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          用數(shù)學(xué)歸納法證明“
          n2+n
          <n+1 (n∈N*)”.第二步證n=k+1時(shí)(n=1已驗(yàn)證,n=k已假設(shè)成立),這樣證明:
          (k+1)2+(k+1)
          =
          k2+3k+2
          k2+4k+4
          =(k+1)+1,所以當(dāng)n=k+1時(shí),命題正確.此種證法( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:江蘇省阜寧縣中學(xué)2011-2012學(xué)年高二下學(xué)期期中調(diào)研考試數(shù)學(xué)試題 題型:044

          已知數(shù)列{an}滿足

          (1)分別求a2;a3;a4的值.

          (2)由(1)猜想{an}的通項(xiàng)公式an

          (3)(文)用數(shù)列知識(shí)證明(2)的結(jié)果.

          (理)用數(shù)學(xué)歸納法證明(2)的結(jié)果.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011屆高考數(shù)學(xué)第一輪復(fù)習(xí)測(cè)試題11 題型:044

          對(duì)于以下數(shù)的排列:

                        2,3,4

                        3,4,5,6,7,

                        4,5,6,7,8,9,10

                        ……

          (1)求前三項(xiàng)每行各項(xiàng)之和;

          (2)歸納出第n行各項(xiàng)的和與n的關(guān)系式;

          (3)用數(shù)學(xué)歸納法證明(2)中所得的關(guān)系式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿分10分)

          已知數(shù)列中,。

          (1)當(dāng)時(shí),用數(shù)學(xué)歸納法證明

          (2)是否存在正整數(shù),使得對(duì)于任意正整數(shù),都有。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案