日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
          (1)當(dāng)a=﹣1時(shí),求函數(shù)f(x)的最大值和最小值.
          (2)函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù),求實(shí)數(shù)a的范圍.

          【答案】
          (1)解:a=﹣1,f(x)=(x﹣1)2+1;

          ∴f(1)=1是f(x)的最小值,f(﹣5)=37是f(x)的最大值


          (2)解:f(x)的對(duì)稱軸為x=﹣a;

          ∵f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù);

          ∴﹣a≤﹣5,或﹣a≥5;

          ∴a≥5,或a≤﹣5;

          ∴實(shí)數(shù)a的范圍為(﹣∞,﹣5]∪[5,+∞)


          【解析】(1)求二次函數(shù)的最值、單調(diào)性,可以對(duì)二次函數(shù)方程使用配方法,使得函數(shù)的最值與單調(diào)性一目了然;(2)根據(jù)二次函數(shù)的開口方向、對(duì)稱軸與函數(shù)單調(diào)性的關(guān)系得到抽象函數(shù)的單調(diào)遞增與遞減區(qū)間,再結(jié)合題意列出不等式組,解不等式組求得實(shí)數(shù)a的取值范圍.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);函數(shù)的單調(diào)性還有單調(diào)不增,和單調(diào)不減兩種,以及對(duì)二次函數(shù)在閉區(qū)間上的最值的理解,了解當(dāng)時(shí),當(dāng)時(shí),;當(dāng)時(shí)在上遞減,當(dāng)時(shí),

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=1,當(dāng)n≥2時(shí),Sn=2an
          (1)求證數(shù)列{an}為等比數(shù)列,并求出an的通項(xiàng)公式;
          (2)設(shè)若bn=an+1﹣1,設(shè)數(shù)列{anbn}的前n項(xiàng)和為Tn , 求Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知F1 , F2是橢圓 (a>b>0)的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P(﹣1, )在橢圓上,且 =0,⊙O是以F1F2為直徑的圓,直線l:y=kx+m與⊙O相切,并且與橢圓交于不同的兩點(diǎn)A,B
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)當(dāng) =λ,且滿足 ≤λ≤ 時(shí),求弦長(zhǎng)|AB|的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)g(x)= ,則函數(shù)f(x)=g(lnx)﹣ln2x的零點(diǎn)個(gè)數(shù)為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥側(cè)面A1ABB1 , 且AA1=AB=2

          (1)求證:AB⊥BC;
          (2)若AC=2 ,求銳二面角A﹣A1C﹣B的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}的首項(xiàng)a1= ,an+1= ,n∈N*
          (1)求證:數(shù)列{ ﹣1}為等比數(shù)列;
          (2)記Sn= + +…+ ,若Sn<100,求滿足條件的最大正整數(shù)n的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓C: (a>b>0)的離心率為 ,左、右焦點(diǎn)分別為F1 , F2 , 點(diǎn)G在橢圓C上,且 =0,△GF1F2的面積為2.

          (1)求橢圓C的方程;
          (2)直線l:y=k(x﹣1)(k<0)與橢圓Γ相交于A,B兩點(diǎn).點(diǎn)P(3,0),記直線PA,PB的斜率分別為k1 , k2 , 當(dāng) 最大時(shí),求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若數(shù)列A:a1 , a2 , …,an(n≥3)中ai∈N*(1≤i≤n)且對(duì)任意的2≤k≤n﹣1,ak+1+ak﹣1>2ak恒成立,則稱數(shù)列A為“U﹣數(shù)列”.
          (Ⅰ)若數(shù)列1,x,y,7為“U﹣數(shù)列”,寫出所有可能的x,y;
          (Ⅱ)若“U﹣數(shù)列”A:a1 , a2 , …,an中,a1=1,an=2017,求n的最大值;
          (Ⅲ)設(shè)n0為給定的偶數(shù),對(duì)所有可能的“U﹣數(shù)列”A:a1 , a2 , …,an0 , 記M=max{a1 , a2 , …,an0},其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個(gè)數(shù)中最大的數(shù),求M的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=x3+x,對(duì)任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,則x的取值范圍為

          查看答案和解析>>

          同步練習(xí)冊(cè)答案