日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•豐臺(tái)區(qū)一模)直線x-
          3
          y+2=0被圓x2+y2=4截得的弦長(zhǎng)為
          2
          3
          2
          3
          分析:由圓的方程找出圓心坐標(biāo)與半徑r,利用點(diǎn)到直線的距離公式求出圓心到已知直線的距離d,利用垂徑定理及勾股定理即可求出截得的弦長(zhǎng).
          解答:解:由圓x2+y2=4,得到圓心(0,0),r=2,
          ∵圓心(0,0)到直線x-
          3
          y+2=0的距離d=
          2
          2
          =1,
          ∴直線被圓截得的弦長(zhǎng)為2
          r2-d2
          =2
          3

          故答案為:2
          3
          點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:點(diǎn)到直線的距離公式,圓的標(biāo)準(zhǔn)方程,垂徑定理,以及勾股定理,熟練運(yùn)用垂徑定理及勾股定理是解本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•豐臺(tái)區(qū)一模)執(zhí)行右邊的程序框圖所得的結(jié)果是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•豐臺(tái)區(qū)一模)如果函數(shù)y=f(x)圖象上任意一點(diǎn)的坐標(biāo)(x,y)都滿足方程 lg(x+y)=lgx+lgy,那么正確的選項(xiàng)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•豐臺(tái)區(qū)一模)已知a∈Z,關(guān)于x的一元二次不等式x2-6x+a≤0的解集中有且僅有3個(gè)整數(shù),則所有符合條件的a的值之和是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•豐臺(tái)區(qū)一模)已知變量x,y滿足約束條件
          x+y≤1
          x+1≥0
          x-y≤1
          ,則e2x+y的最大值是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•豐臺(tái)區(qū)一模)設(shè)滿足以下兩個(gè)條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:
          ①a1+a2+a3+…+an=0;
          ②|a1|+|a2|+|a3|+…+|an|=1.
          (Ⅰ)分別寫(xiě)出一個(gè)單調(diào)遞增的3階和4階“期待數(shù)列”;
          (Ⅱ)若某2k+1(k∈N*)階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式;
          (Ⅲ)記n階“期待數(shù)列”的前k項(xiàng)和為Sk(k=1,2,3,…,n),試證:
          (1)|Sk|≤
          1
          2
          ;     
          (2)|
          n
          i=1
          ai
          i
          |≤
          1
          2
          -
          1
          2n

          查看答案和解析>>

          同步練習(xí)冊(cè)答案