日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知sinα=-,270°<α<360°,那么sin2α的值是( )
          A.
          B.-
          C.-
          D.
          【答案】分析:由題意可知cosα>0,由sinα=-,sin2α+cos2α=1,可求得cosα,利用二倍角的正弦即可求得答案.
          解答:解:∵sinα=-,270°<α<360°,
          ∴cosα>0,又sin2α+cos2α=1,
          ∴cosα=,
          ∴sin2α=2sinαcosα
          =2×(-)×
          =-
          故選B.
          點評:本題考查同角三角函數(shù)的基本關(guān)系式:sin2x+cos2x=1與二倍角的正弦公式,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知sinα=
          4
          5
          ,α∈(
          π
          2
          ,π),cosβ=-
          5
          13
          ,β∈(π,
          2
          )
          ,分別求:sin(α+β),cos(α-β),tan(α-β)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          計算:
          (1)已知sin(π-α)-cos(π+α)=
          2
          3
          (
          π
          2
          <α<π)
          ,求sinα-cosα的值.
          (2)求函數(shù)y=cos2x-2sinx+3的最大值及相應(yīng)x的集合.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知sinα=
          4
          5
          α∈(
          π
          2
          ,
          2
          )

          (1)求sin2α-cos2
          α
          2
          的值;
          (2)求函數(shù)f(x)=
          5
          6
          cosαsin2x-
          1
          2
          cos2x的最小正周期和單調(diào)增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知sin(π-α)-cos(π+α)=
          2
          3
          (
          π
          2
          <α<π)

          求:(1)sinα-cosα;
          (2)sin3(2π-α)+cos3(2π-α).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知sinα=
          4
          5
          ,α∈(
          π
          2
          ,π)
          ,則sin(
          π
          4
          -α)
          =
          -
          7
          2
          10
          -
          7
          2
          10

          查看答案和解析>>

          同步練習(xí)冊答案